ПОДАВЛЕНИЕ АРТЕФАКТОВ ИЗОБРАЖЕНИЯ В СПЕКТРАЛЬНОЙ ОПТИЧЕСКОЙ КОГЕРЕНТНОЙ ТОМОГРАФИИ ПРИ ПОПЕРЕЧНОМ СКАНИРОВАНИИ

В.М. Геликонов, Г.В. Геликонов, Д.А. Терпелов, П.А. Шилягин

Институт прикладной физики РАН ООО «Биомедтех»

Спектральный вариант оптической когерентной томографии (ОКТ), потенциально обладающий наибольшим быстродействием, основан на анализе спектра интерференции опорной и рассеянной объектом волн. полученного при помощи лифракционной решетки [1, 2]. Несмотря на очевилные преимущества в скорости и чувствительности [2, 3], спектральный метод имеет ряд недостатков, одним из которых является высокая чувствительность метода к наличию когерентных помех артефактов. Данные помехи обусловлены паразитной модуляцией спектра, возникающей по причинам, отличным от интерференции между опорным и рассеянным в среде излучением [4, 5] (см. рис., а). На сегодняшний день разработано довольно большое число методов борьбы с когерентными помехами [6], однако поиски эффективного способа устранения артефактов изображения, вызванных наличием когерентных помех, продолжаются до сих пор (см., например, [7, 8]). В [9] был описан эффективный способ устранения с изображения ОКТ артефактов, обусловленных когерентными помехами. Основным недостатком описанного в [9] метода является последовательная регистрация шумовых и сигнальных компонент, что при наличии постоянного во времени смещения зондирующего луча приводит к недостаточной эффективности дискриминации когерентных артефактов в изображении.

Рис.

Как следствие, метод хорошо применим только для случая квазистационарного зондирования, когда в промежутке между двумя и более последовательными Асканами не происходит существенного изменения структуры излучения, рассеянного объектом исследования в обратном направлении. В реальных ОКТ системах скорость регистрации изображений обратно пропорциональна числу А-сканов, и зондирование с поперечным шагом, существенно меньшим диаметра зондирующего луча, представляется нецелесообразным. Таким образом, прямое применение метода, описанного в [9], является недостаточно эффективным (рис., б).

Для эффективного подавления когерентных помех при поперечном сканировании было предложено использовать процедуру пересчета (ресамплинга) значений шумовых составляющих $U(k, x_{AC})$ в моменты времени, соответствующие регистрации информативного сигнала $U(k, x_{CC})$.

Вычисление промежуточных значений массива данных $U(k, x_{AC})$ по поперечной координате возможно как традиционными методами интерполяции [10], так и при введении в спектральной области, соответствующей x_{AC} , дополнительного множителя, фаза которого пропорциональна поперечной пространственной частоте ОКТ изображения:

$$\overline{V}^{+}(k,K) = \overline{V}(k,K) \cdot e^{i\frac{\pi}{2} \cdot \alpha \frac{K}{K_{\max}}}$$

Весовой коэффициент α определяется отношением частоты выборок автокорреляционной составляющей к частоте выборок кросскорреляционной составляющей. При поочередной регистрации автокорреляционной и кросскорреляционной составляющих $\alpha = 1$. Использование обратного преобразования Фурье для полученного массива значений возвращает только промежуточные значения для автокорреляционной составляющей. Оценки показывают, что вычислительная емкость описанного метода при большом числе отсчетов в поперечном направлении в полтора раза ниже вычислительной емкости метода, описанного в [10].

На рис. 1, *в* представлено изображение, полученное при использовании описанной методики восстановления промежуточных значений величины автокорреляционной составляющей. Хорошо видно, что в выделенной области артефактное изображение отсутствует.

Работа частично поддержана Фондом содействия развитию малых форм предприятий в научно-технической сфере по программе У.М.Н.И.К. (госконтракт № 7379 р/10164 от 28.12.2009) и Минобрануки РФ (госконтракт № 16.512.11.2002 от 10.02.2011).

- [1] Fercher A.F., Hitzenberger C.K., Kamp G., El-Zaiat S.Y. //Opt. Comm. 1995. V. 117, No.1–2. P. 43.
- [2] Choma M.A., Sarunic M.V., Yang C.H. //Opt. Express. 2003. V. 11, No.18. P. 2183.
- [3] Leitgeb R., Hitzenberger C., Fercher A. //Opt. Express. 2003. V. 11, No.8. P. 889.
- [4] Fercher A.F., Leitgeb R.A., Hitzenberger C.K., Sattmann H., Wojtkowski M. //Proc. SPIE. 1999. V. 3564. P. 173.
- [5] Wojtkowski M., Leitgeb R., Kowalczyk A., Bajraszewski T., Fercher A.F. //J. of Biomedical Opt. 2002. V.7, No.3. P. 457.
- [6] Геликонов В.М., Касаткина И.В., Шилягин П.А. //Изв. вузов. Радиофизика. 2009. Т. 52, №11. С. 897.
- [7] Moon S., Lee S.-W., Chen Z. //Opt. Express. 2010. V. 18, No.24. P. 24395.
- [8] Steiner P., Meier Ch., Koch V.M. //Appl. Opt. 2010. V. 49, No.36. P. 6917.

- [9] Геликонов В.М., Геликонов Г.В., Касаткина И.В., Терпелов Д.А., Шилягин П.А. //Опт. и спектр. 2009. Т. 106, №6. С. 1006.
- [10] Зверев В.А., Стромков А.А. Выделение сигналов из помех численными методами. – Нижний Новгород: ИПФ РАН, 2001, 188 с.

ДИПОЛЬНЫЕ РЕЗОНАНСЫ АТОМНОГО СФЕРИЧЕСКОГО КЛАСТЕРА В.Б. Гильденбург¹⁾, В.А. Костин²⁾, И.А. Павличенко¹⁾

¹⁾Нижегородский госуниверситет ²⁾Институт прикладной физики РАН

Как известно, взаимодействие лазерного импульса с кластерной плазмой может сопровождаться резонансными явлениями, связанными с возбуждением коллективных электронных колебаний атомного кластера на частотах порядка плазменной. Интерес к этим явлениям связан в настоящее время как с общими проблемами исследования оптических спектров рассеяния и поглощения кластеров различных типов (металлических или ионизованных), так и с перспективами разнообразных связанных с ними практических применений [1]. В настоящей работе приведены результаты расчета спектра линейного поляризационного отклика металлических кластеров малых размеров с учетом пространственной дисперсии, обусловленной тепловым движением электронов.

В гидродинамическом приближении исследование резонансных свойств однородного плазменного тела малых размеров сводится к решению следующей краевой задачи для потенциала электрического поля $\varphi(\mathbf{r})\exp(-i\omega t)$ в вакууме ($\varphi = \varphi$) и в вырожденной плазме металлического кластера ($\varphi = \varphi^{(i)} = \varphi_t + \varphi_p$) [2, 3]:

$$\Delta \varphi^{(e)} = 0, \ \Delta \varphi_t = 0, \ \Delta \varphi_p + k_p^2 \varphi_p = 0, \ k_p = \sqrt{5\epsilon/3} \, \omega/V_F, \ \epsilon = 1 - \left[\omega_p^2 / \omega(\omega + i\nu)\right],$$
(1)

где ω_p – плазменная частота, v – эффективная частота соударений электронов, $V_F = (3\pi^2)^{1/3} \hbar N^{1/3}/m$ – фермиевская скорость. На границе плазмы потенциал и его нормальная производная удовлетворяют следующим граничным условиям:

$$\varphi^{(e)} = \varphi^{(i)} , \quad \frac{\partial \varphi^{(e)}}{\partial n} = \varepsilon \frac{\partial \varphi_t}{\partial n} , \quad \frac{\partial \varphi^{(e)}}{\partial n} = \frac{\partial \varphi^{(i)}}{\partial n} . \tag{2}$$

Для плазменного шара радиуса *a* решение задачи (1)-(2) легко находится методом разделения переменных в сферических координатах и выражается через сферические гармоники. Интересующее нас решение дипольного типа с вектором дипольного момента $\mathbf{p} = \mathbf{e}_z p$, параллельным заданному внешнему полю $\mathbf{E}_0 = \mathbf{e}_z E_0 \exp(-i\omega t)$ (к которому добавляется поле реакции излучения $\mathbf{E}_{rad} = (2/3c)^3(d^3\mathbf{p}/dt^3)$), приводит к следующим выражениям для дипольного момента и поля в центре кластера:

$$p = \frac{a^{3}(\varepsilon - 1)(1 - G)E_{0}}{F}, \quad E(0) = \frac{[3j_{1}'(k_{p}a) - \varepsilon + 1]E_{0}}{j_{1}'(k_{p}a)F}, \quad (3)$$

$$G = \frac{j_1(k_p a)}{k_p a j_1'(k_p a)}, \quad F = \varepsilon + 2[1 + (\varepsilon - 1)G] - (2i/3)(ka)^3(\varepsilon - 1)(1 - G), \quad (4)$$

где $j_1(k_pa)$ и $j_1'(k_pa)$ – сферическая функция Бесселя и ее производная, $k = \omega/c$. Условие F = 0 определяет спектр комплексных собственных частот дипольных колебаний кластера $\dot{\omega}_n = \omega_n + i\gamma_n$. Для поверхностного (n = 0) и объемных (n = 1, 2, 3, ...) плазмонов с учетом радиационных $(\gamma = \gamma_r)$, столкновительных $(\gamma = \nu/2)$ и кинетических $(\gamma = \gamma_k)$ потерь (последние учитываются приближенно на основании одномерной модели [4], примененной к фермиевской плазме) имеем соответственно $(\gamma_n = \gamma_r n + \nu/2 + \gamma_k n)$

$$\frac{\omega_0^2}{\omega_p^2} = \frac{1}{3}, \gamma_{k0} = g_1 \omega_p \frac{\lambda_D}{a}, \quad \frac{\gamma_{r0}}{\omega_0} = \frac{1}{3} \left(\frac{\omega_0 a}{c}\right)^3, \quad (5)$$

$$\frac{\omega_n^2}{\omega_p^2} = 1 + \frac{3}{5} \left(\frac{\mu_n \lambda_D}{a}\right)^2, \ \gamma_{kn} = g_2 \,\omega_p \,(2n+1)^2 \left(\frac{\lambda_D}{a}\right)^5, \ \frac{\gamma_{rn}}{\omega_n} \approx \frac{1}{5} \mu_n^2 \left(\frac{\lambda_D}{a}\right)^4 \left(\frac{\omega_n a}{c}\right)^3, \ (6)$$

где $g_1 \approx 0,02, g_2 \approx 0,01, \mu_n \approx (n-1)\pi, \lambda_D = V_F / \omega_p.$

На основании представленных результатов были рассчитаны частотные зависимости дипольного момента *p* и поля *E*(0) для кластера с размером *a* = 4 – 20 нм и плотностью электронов *N* = 4·10²² см⁻³. Как показали проведенные расчеты, при комнатной температуре кластера объемные плазмоны, в отличие от поверхностного, почти полностью подавляются соударениями, однако при понижении частоты соударений до значений v/ $\omega_p \sim 10^{-4}$ – 10^{-2} (соответствующих, по-видимому, температурам ~ 10–100 К) резонансы поля в центре кластера, в отличие от резонансов дипольного момента, оказываются более сильными именно для объемных плазмонов, что иллюстрируется резонансными кривыми на рис. 1 (v/ $\omega_p = 10^{-2}$) и рис. 2 (v/ $\omega_p = 10^{-4}$).

Работа выполнена при поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы и грантов РФФИ 09-02-01490 и 11-02-01416.

- Kreibig U., Vollmer M. Optical Properties of Metal Clusters. Berlin, Heidelberg: Springer-Verlag, 1995, 532 p.
- [2] Гильденбург В.Б., Кондратьев И.Г. //Радиотехника и электроника. 1965. Т.10. С.658.
- [3] Ruppin R. //Phys. Rev. B. 1975. V.11. P.2871.
- [4] Быстров А.М., Гильденбург В.Б. //ЖЭТФ. 2005. Т.127. С.478.

АL-СОДЕРЖАЩИЕ МНОГОСЛОЙНЫЕ СТРУКТУРЫ ДЛЯ ДИАПАЗОНА ДЛИН ВОЛН 25-40 HM

Ю.А. Вайнер¹⁾, С.Ю. Зуев¹⁾, В.Н. Полковников¹⁾, Н.Н. Салащенко¹⁾, С.Д. Стариков²⁾

¹⁾Институт физики микроструктур РАН ²⁾Нижегородский госуниверситет

Понимание механизмов нагрева, процессов накопления, переноса и выделения энергии является одной из наиболее интересных и важных задач современной физики Солнца. Исследование линий спектра излучения корональной плазмы Солнца в мягком рентгеновском и вакуумном ультрафиолетовом диапазонах длин волн позволяет получать информацию о данных процессах. Решение новых задач и развитие работ в этой области приводит к значительному повышению требований к отражательным характеристикам многослойных зеркал, применяемых в качестве элементов оптических схем телескопов. Важнейшими свойствами телескопов являются временное, пространственное и спектральное разрешения, во многом определяемые отражательными характеристиками зеркал. Поэтому актуальна задача синтеза многослойных отражающих покрытий с максимальными коэффициентами отражения и величинами спектральной селективности.

В 2010 г. физическим институтом им. П.Н. Лебедева разработан новый проект по наблюдению солнечной активности в диапазоне длин волн 13–500 нм. Проект получил название АРКА [1]. Основными характеристиками новой обсерватории являются субсекундное (~ 0,18") угловое разрешение, высокие временное (порядка 1 секунды) и спектральное (до 100 для двухзеркальной схемы) разрешения. Из восьми рабочих каналов обсерватории в рассматриваемом диапазоне 25–40 нм предполагается работа 2–3 каналов регистрации (Fe XV ($\lambda = 28,4$ нм), He II ($\lambda = 30,4$ нм) и Fe XVI ($\lambda = 36$ нм)). В данном диапазоне применявшиеся ранее отражательные элементы астрономических телескопов уже не удовлетворяют высоким требованиям обсерватории APKA. В частности, для проекта ТЕСИС [2] на длину волны $\lambda = 30,4$ нм применялись Mg/Si-зеркала с антидиффузионными слоями. Кроме временной нестабильности (за год коэффициент отражения падал с 38% до 28–30%) эти структуры обладали относительно низкой спектральной селективностью: $\lambda/\Delta\lambda \approx 28$. Поэтому целью данной работы стал синтез альтернативных отражающих покрытий для диапазона длин волн 25-40 нм, удовлетворяющих требованиям проекта АРКА.

Была предложена структура на основе Al и Mg, коэффициент отражения которой при оптимизации на длину волны $\lambda = 30,4$ нм в теории достигает $R_{id} = 52\%$, при этом $\lambda/\Delta\lambda = 36$. Однако первые же эксперименты по изучению синтезированных образцов Al/Mg показали, что данные зеркала имеют сушественные недостатки, к которым относятся: во-первых, нестабильность во времени, а во-вторых, высокий уровень межплоскостной шероховатости. Причем ланный

процесс быстро развивается во времени. На рисунке приведены угловые зависимости коэффициента отражения зеркала Al/Mg ($\lambda = 0,154$ нм), снятые сразу после напыления (сплошная кривая) и через три месяца (пунктирная кривая). Резкое падение коэффициента отражения первых порядков и полное исчезновение дальних порядков отражения свидетельствует о возрастании уровня шероховатости до 5–6 нм. Это может быть связано с перемешиванием материалов на границах раздела, протекавшим в течение предшествовавшего периода времени. На длине волны 30,4 нм пика отражения от данного зеркала уже спустя трое суток после напыления обнаружить не удалось.

Эксперименты по нанесению барьерных слоев карбида бора B_4C показали, что при осаждении Mg на Al образуется более протяженная переходная граница, чем в случае обратного осаждения.

Для частичного решения проблем протяженных переходных границ могут быть использованы тройные структуры Al/Si/Mg. Кремний в данном случае играет роль прослойки между алюминием и магнием. Теоретический расчет отражательных характеристик тройных структур показал перспективность данных зеркал. Коэффициент отражения на $\lambda = 30,4$ нм достигает $R_{id} = 60\%$ при $\lambda/\Delta\lambda \approx 30$. Были изготовлены несколько образцов зеркал. Наилучшими отражательными характеристиками обладало зеркало с последовательностью нанесения материалов на подложку Mg/Al/Si: R = 19%, $\lambda/\Delta\lambda = 37$.

Следующим этапом было разделение границы Al-Mg в тройных структурах. В качестве буферного слоя также применялся B₄C. Коэффициент отражения структуры Mg/B₄C/Al/Si на длине волны $\lambda = 30,4$ нм составил R = 25%, селективность $\lambda/\Delta\lambda = 36$. При этом ни толщины слоев основных материалов, ни толщина антидиффузионной прослойки не были оптимизированы. Также стоит отметить, что замешивание происходит и на границе Mg-Si [3]. Таким образом, при дальнейшей оптимизации и использовании дополнительных барьерных слоев предполагается получить покрытия, обладающие большими коэффициентами отражения и величинами спектральной селективности, чем в ранее используемых зеркалах.

- [1] Кузин С.А., Богачев С.А., Шестов С.В., Рева А.А., Ульянов А.С. //Изв. РАН. Сер. физическая. 2011. Т. 75, №1. С. 91.
- [2] Кузин С.В., Богачев С.А., Житник И.А. и др. //Изв. РАН. Сер. физическая. 2010. Т.74, №1. С. 39.
- [3] Андреев С.С., Зуев С.Ю., Мизинов А.Л., Полковников В.Н., Салащенко Н.Н. //Поверхность. 2005. №8. С. 9.

МОДЕЛИРОВАНИЕ МИКРОПОЛОСКОВОГО ИЗЛУЧАТЕЛЯ НА ПОДЛОЖКЕ ИЗ МЕТАМАТЕРИАЛА

Е.А. Шорохова, М.С. Манахова

Нижегородский госуниверситет

Одно из перспективных направлений в создании антенн нового поколения связано с использованием в их конструкции искусственных композитных метаматериалов [1, 2]. Теоретические и экспериментальные исследования показывают, что применение метаматериалов и материалов с киральными свойствами позволяет увеличить полосу частот и коэффициент усиления антенны. Основной целью данной работы является исследование возможности увеличения коэффициента усиления микрополосковой антенны (МПА) с помощью использования подложки из метаматериала.

В работе проведено моделирование микрополосковой антенны с помощью программы

Ansoft HFSS 12. В качестве тестовой модели была выбрана прямоугольная МПА, изготовленная на однородной подложке (см. рис. 1). Антенна имеет геометрические размеры $3,9\times3,3\times0,15$ см, квадратный излучатель – $1,98\times1,59$ см, центральная полосковая линия – $0,7\times1,5$ см, симетричные прорези в излучателе – $0,15\times0,7$ см. В качестве подложки используются два материала: Rogers RO4003 ($\varepsilon = 3,55-j0,0027$) и метаматериала ($\varepsilon = -3,55-j0,0027$, $\mu = -1$). Питание антенны осуществляется с помощью коаксиального кабеля с внутренним ради-

усом 0,042 см и внешним 0,142 см. Точка возбуждения антенны имеет координаты (0; 0,31 см), как показано на рис. 1.

На рис. 2 представлены зависимости коэффициента отражения на входе антенны (S₁₁) от частоты в полосе 1–10 ГГц для подложки из материала Rogers RO4003 (случай 1, пунктир) и метаматериала (случай 2, сплошная линия).

Из рисунка видно, что в случае 1 антенна имеет наилучшее согласование на частоте 6,7 ГГц, в то время как в случае 2 – на частоте 6,9 ГГц. На этих частотах производился численный расчет коэффициента усиления.

На рис. З показан коэффициент усиления как функция угла θ . Максимальное усиление в случае 1 было достигнуто при $\varphi = 110^\circ$, $\theta = 40^\circ$ и составило 4,9 дБ, в то время как в случае 2 оно оказалось порядка 10 дБ при $\varphi = 145^\circ$, $\theta = 72^\circ$.

Из рис. 2 и 3 следует, что использование в качестве подложки метаматериала с отрицательными вещественными диэлектрической и магнитной проницаемостями при сохранении геометрии антенны может приводить к смещению минимума S_{11} -параметра в область более высоких частот, а также к увеличению коэффициента усиления в среднем в 2 раза.

Таким образом, в работе представлены результаты компьютерного моделирования микрополосковой антенны с помощью программного пакета Ansoft HFSS 12. Расчеты показали возможность синтеза МПА с заданными характеристиками при использовании в качестве подложки метаматериала с одновременными отрицательными значениями ε и μ .

Седаков А.Ю., Кашин А.В., Шорохова Е.А. //Антенны. 2010. № 7 (158). С.5.
 Панченко Б.А., Гизатуллин М.Г. Наноантенны. – М.: Радиотехника, 2010, 96 с.

О СВОЙСТВАХ ЭЛЕКТРОМАГНИТНЫХ ПЛОСКИХ ВОЛН ВО ВРАЩАЮЩЕЙСЯ СИСТЕМЕ ОТСЧЁТА В ПРИБЛИЖЕНИИ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ

А.И. Красильников, Н.Д. Миловский

Нижегородский госуниверситет

Лазерное излучение широко используется на искусственных космических объектах, где условия его распространения отличаются от земных. В настоящем сообщении рассмотрены некоторые свойства распространяющейся в вакууме плоской электромагнитной волны $e = \text{Re}\{e_0\exp[i(\omega t - k_0\psi)]\}$ во вращающейся с угловой скоростью $\Omega = \Omega \zeta^0$ системе координат, а также показана необходимость учёта влияния её неинерциальности на работу лазеров и трактов передачи лазерного излучения.

Из волнового уравнения (для ковариантного вектора электрического поля) [1]

$$rot\{g_{00}(\hat{s}\cdot rot\vec{e})\} + (1/g_{00})\partial^{2}(\hat{s}\cdot\vec{e})/(\partial x^{0})^{2} + g_{00}\partial[\vec{g}\times(\hat{s}\cdot rot\vec{e})]/\partial x^{0} + \partial^{2}[\vec{g}\times[\vec{G}\times(\hat{s}\cdot\vec{e})]]/(\partial x^{0})^{2} + \partial\{rot[\vec{G}\times(\hat{s}\cdot\vec{e})]\}/\partial x^{0} = 0$$
(1)

в цилиндрической системе мировых координат ($x^0 = ct$, $x^1 = r$, $x^2 = \theta$, $x^3 = z$), неинерциальные свойства которой заключены в элементах метрического тензора

$$g_{ik} = \begin{pmatrix} 1 - K^2 r^2 & 0 & -Kr & 0 \\ 0 & -1 & 0 & 0 \\ -Kr & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},$$
(2)

в приближении геометрической оптики ($k_0 = \omega/c \rightarrow \infty$) получено уравнение эйконала

$$\left(\partial\Psi/\partial r\right)^{2} + \left(1 - K^{2}r^{2}\right)\left(\partial\Psi/r\partial\theta\right)^{2} - 2K\left(\partial\Psi/\partial\theta\right) - 1 = 0, \qquad (3)$$

в котором вклад вращения в его решения $\Psi(r, \theta)$ определяет параметр K = Ω/c . В волновом уравнении (1) использованы скалярные и векторные произведения с участием ковариантного $s_{\alpha\beta} = -g_{\alpha\beta} + (g_{0\beta} g_{0\beta}/g_{00}) \equiv \hat{s}$ и контравариантного $s^{\alpha\beta} = -g^{\alpha\beta} \equiv \hat{S}$

пространственных метрических тензоров, а также ковариантного $g = -Kr\theta_0/g_{00}$ и контравариантного $G = -Kr\theta^0$ метрических векторов, элементы g^{ik} которых связаны соотношениями $g^{ik}g_{\kappa\lambda} = \delta_{\lambda}^{i}$ с элементами ковариантного тензора g_{ik}

Из решения уравнения эйконала методом характеристик в плоскости z = const следует, что первым интегралом (3) является величина $q = \partial \Psi / \partial \theta \equiv \text{const}$, и что в общем случае траектория луча в полярных координатах описывается уравнениями

$$\theta_{\pm}(r) = \pm \left\{ \left(\alpha_q / \left| \alpha_q \right| \right) arctg \sqrt{\left(r / \alpha_q \right)^2 - 1} - K \sqrt{r^2 - \alpha_q^2} \right\} + C_{\pm}^{\theta}, \quad (4)$$

в которых $\alpha_q = q/(1+Kq)$, а постоянные интегрирования C_{\pm}^{θ} определяются из начальных условий: $r = \tilde{r}, \theta(\tilde{r}) = \tilde{\theta}$. Из (4) следует, что

траектории лучей не прямолинейны. Ha рис. 1 представлены траектории, лве по которым распространяется луч из точки В(7; -1) в точку А(-2; 16) и обратно во вращающейся навстречу часовой стрелке системе координат (K = 0.05). Траектория луча ВА, имеющего положительную проекцию ($q^+ = 1,05$) лучевого на направление скорости вращения точек вектора s пространства [Ω, r], смещается от прямой линии в сторону оси вращения, проходящей через точку О(0; 0). Минимальное расстояние α_q^+ от ВА до O(0; 0) всегда

меньше минимального расстояния от O(0; 0) до прямой BA ($\alpha_q^+ = 1 < 5,7$). Напротив, минимальное расстояние ($|\alpha_q^-| = 7$) от O(0; 0) до траектории AB, для которой $q^- = -5,2$, всегда больше расстояния до прямой AB.

На рис. 2, а для упомянутой выше системы отсчёта приведено распределение

лучей изотропного точечного источника оптического излучения в той части пространства $r < r_{\infty} = 1/K$, где свойства метрического тензора (2) можно использовать для описания процессов с реальными материальными полями. Для сравнения на рис. 2, б изображена лучевая картина излучения, генерируемого на границе $r_{\infty} = 1/K$ и принимаемого

Purc 2

изотропным точечным приёмником.

В точках пространства (2) лучевой вектор *s* и градиент эйконала, связанные соотношением:

$$\nabla \Psi - \vec{s} = K r \vec{\theta}^0, \tag{5}$$

различаются тем больше, чем больше расстояние от оси вращения системы.

Из приведённых результатов следует, что во вращающейся системе отсчёта невозможно существование встречных плоских волн. Применительно к лазерам это означает нарушение структуры мод в виде стоячих волн в двухзеркальных и подобных им оптических резонаторах и, как следствие, изменение условий устойчивости резонансных систем. В околоземных космических условиях более устойчивыми и добротными могут оказаться резонаторы лазеров, зеркала которых перекошены относительно оптической оси на заранее определённые углы. Поэтому корректный учёт влияния вращения может улучшить работу лазерных систем.

[1] Красильников А.И., Миловский Н.Д. //В кн.: Тр. 14-й научн. конф. по радиофизике. 7 мая 2010 г. /Ред. С.М. Грач, А.В. Якимов. – Н.Новгород: Изд-во ННГУ, 2010. С.21.

ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИМПУЛЬСА В ИОНОСФЕРЕ ЗЕМЛИ, ВОЗМУЩЕННОЙ ЯДЕРНЫМ ВЗРЫВОМ

А.С. Белов, Е.Ю. Яркина

Нижегородский госуниверситет

Работа посвящена исследованию процесса распространения сверхширокополосного электромагнитного импульса (СШП ЭМИ) в ионосфере, возмущенной ядерным взрывом, а также сравнению параметров сигнала с характеристиками

СШП ЭМИ, распространяющегося через невозмущенную ионосферу. Интерес к данным исследованиям связан с перспективами внедрения развивающихся технологий генерации и измерения параметров СШП ЭМИ в задачи космической связи.

Ядерный взрыв, произошедший на высоте более 150 км, существенно нарушит свойства естественной окружающей ионосферы и магнитосферы как во времени (от

нескольких секунд до нескольких часов), так и пространстве (от единиц метров до тысяч километров). Типичный высотный ядерный взрыв проходит несколько стадий, во время которых параметры плазмы и нейтрального газа (такие как плотность, температура, значение магнитного поля и т.д.) меняются на несколько порядков. Через определенный промежуток времени (от нескольких минут до часов) окружающие магнитные поля релаксируют к их предвзрывному состоянию, при этом плазма от взрыва распространяется на огромнейшие расстояния, и в конечном итоге ее концентрация спадает к нормальным окружающим значениям. В работе [1] дано аналитическое выражение для электронной плотности ионосферы при ядерном высотном взрыве. Согласно развитой теории, электронная плотность через 300 с после взрыва увеличивается на 3 порядка, при этом положение максимума сдвигается по высоте (см. рис. 1).

Таким образом, можно утверждать, что на высоте 200 км ионосфера остается прозрачной для СШП ЭМИ, и величину электрического поля импульса после взрыва можно найти по следующей формуле:

$$E = \frac{\partial}{\partial \tau} \int_{0}^{\infty} du E_0 (\tau - u) J_0 \left(2 \sqrt{\Omega u / \cos \theta} \right), \tag{1}$$

где J_0 – функция Бесселя нулевого порядка, E_0 – электрическое поле падающего импульса, θ – угол, образованный вертикалью и направлением распространения сигнала. Величина Ω находится из соотношения

$$\Omega = \frac{\cos\theta}{2c} \int_{z_0}^{z} dz \omega_e^2 = \frac{2\pi e^2}{mc} \int_{h_0}^{h} dh N_e(h), \qquad (2)$$

где $\omega_{pe}^{2} = 4\pi e^{2} N_{e}/m$ – квадрат плазменной частоты.

Как видно из рис. 2, происходит значительное искажение временной формы сигнала, отличное от трансформации импульса при прохождении естественной ионосферы. В случае невозмущенной трассы амплитуда медленно спадает со временем, а при возмущенной трассе, наоборот, несколько возрастает и выходит на постоянное значение. Отметим, однако, что деталь-

ный анализ данных процессов затруднен в связи со сложностью численного расчета. Для оценки точности вычислений был проведен аналитический расчет интеграла (1) для сигнала, аппроксимированного ступенчатой функцией. Результаты аналитического и численного расчетов оказываются весьма близкими (см. рис. 3).

Таким образом, предложенная модель может быть использована для определения характеристик СШП ЭМИ при значительных возмущениях ионосферы Земли.

[1] Keskinen M.J., Fedder J.A. //NRL Memorandum report. 1988. 25 p.

РАССЕЯНИЕ ВОЛНЫ, ФОРМИРУЮЩЕЙ ГЕЛИКОННЫЙ РАЗРЯД, НА ЭЛЕКТРОНАХ, УЛЕТАЮЩИХ ИЗ ОБЛАСТИ РАЗРЯДА

О.М. Остафийчук, Г.А. Марков

Нижегородский госуниверситет

В результате экспериментального исследования плазменно-волнового разряда в сильных магнитных полях ($B_0 > 700$ Гс) при малых давлениях ($l_E > L$ где $l_E - д$ лина свободного пробега электронов, а L - длина разрядного баллона) был обнаружен эффект уширения в красную сторону спектральной линии поля волны накачки в плазме, а также значительный рост потоков частиц на торцевые стенки разрядного баллона. Такой разряд оказался интересен тем, что он оторван от боковых стенок разрядной камеры и контактирует только с торцевыми стенками [1].

На рис. 1 и 2 приведены спектры рассеянной волны при различных магнитных полях и давлениях. Основание пика, соответствующего волне накачки, на частоте 195 МГц заметно уширено в красную сторону. Величина уширения составляет около 4–6 МГц на уровне –40÷60 dВ при больших магнитных полях и малых давлениях (кривые тёмного цвета). При уменьшении магнитного поля в колбе до 400 Гс (рис. 1, светлая кривая) спектр несколько обужается и становится практически симметричным. При увеличении давления в колбе спектр сигнала становится значительно более узким, а уширение принимало симметричную форму (светлая кривая на рис. 2).

В ходе экспериментов установлено, что с увеличением продольного магнитного поля интенсивность шумов в НЧ спектре рассеянного сигнала резко спадает. Не было обнаружено и каких-либо выделенных максимумов в НЧ спектре. Эти факты позволяют утверждать, что уширение ВЧ спектра не связано с распадными явлениями. В то же время, зондовые измерения показали, что потоки частиц, уходящих на торцы, возрастают с увеличением магнитного поля, и существует возможность рассеяния волны на улетающих из разряда частицах. Из стационарности разряда следует равенство потоков электронов и ионов, но так как сечение рассеяния у электронов много больше, чем у ионов, то на деформацию ВЧ спектра определяющее влияние оказывает поток электронов на торцы разрядной камеры. Очевидно, что эти электроны обладают неким распределением скоростей, что легко объясняет не пичкообразное, а довольно плавное уширение спектра. Оценка в приближении некогерентного рассеяния на свободных частицах даёт существенно меньшую мощность рассеянной волны, чем та, которая наблюдалась в эксперименте. Этот факт указывает на когерентный характер рассеяния волны накачки на токе улетающих электронов. Оказалось, что спектр этого тока уширен в красную сторону аналогично ВЧ спектру рассеянного сигнала, а значит, из-за самосогласованного взаимодействия ток улетающих из разряда электронов в стационарных условиях определяется суммарным ВЧ полем (подводимым и рассеянным).

Таким образом, рассеяние волны на убегающих электронах может привести к существенному уширению спектра поля волны в красную сторону. Подобный эффект может иметь место в формировании спектра искусственного радиоизлучения ионосферы (ИРИ) [2, 3] при воздействии мощным радиоизлучением нагревных стендов типа «Сура» на F₂-область ионосферы. Например, одним из возможных механизмов формирования компонент широкополосного излучения Broad Continuum ИРИ [3] в области отрицательных отстроек от частоты волны накачки может быть рассеяние её на потоке надтепловых электронов, вылетающих из области искусственной турбулентности ионосферы в магнитосферу вдоль силовых линий магнитного поля. По уширению спектра можно оценить энергию и количество убегающих электронов, используя соотношение $\Delta \omega = k v_{Te}$ и величину рассеянного сигнала. В нашем лабораторном эксперименте $\Delta f \approx 6$ МГц – сдвиг частоты рассеянной волны относительно частоты накачки, k – волновое число (длина волны $\lambda = 20$ см). В этом случае приближенная оценка скорости электронов дает величину порядка 1,2·10⁸ см/с. С такой скоростью из разряда за секунду улетает количество электронов, равное N₁. Величина N_1 на порядок меньше N_2 – количества электронов, улетающих со скоростью 10^7 см/с, и на два порядка меньше N_0 – количества электронов, имеющих нулевые продольные скорости. Таким образом, по спектральным характеристикам рассеянного сигнала можно определить функции распределения выбрасываемых из облучаемой области электронов по скоростям.

[1] Марков Г.А., Белов А.С. //УФН. 2010. Т.180, №7. С. 735.

[2] Гуревич А.В. //УФН. 2007. Т. 177, №11. С. 1145.

[3] Thide B., Kopka B., Stubbe H. //Phys. Rev. Lett. 1982. V. 49. P. 1561.

ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ И СПЕКТРОСКОПИЧЕСКИХ СВОЙСТВ КЕРАМИКИ ТМ:LU₂O₃

А.П. Зиновьев^{1,2)}, О.Л. Антипов^{1,2)}, Р. Монкорже³⁾

¹ Нижегородский госуниверситет ² Институт прикладной физики РАН ³Университет города Кан, Франция

Двухмикронный диапазон длин волн (1,9–2,1 мкм) в последние годы становится востребованным для промышленных технологий (обработка пластиков), медицины (хирургии, урологии, офтальмологии и т.д.), дистанционного зондирования атмосферы и экологического мониторинга [1–3].

В настоящее время в этом диапазоне длин волн в качестве источников излучения используют лазеры на основе кристаллов или кварцевых оптических волокон, активированных ионами Ho³⁺ или/и Tm³⁺ [1, 4, 5]. Достоинством твердотельных и волоконных гольмиевых лазеров является наличие длинноволновой генерации (на длине волны ~2,1 мкм), однако для их эффективной накачки необходимо использовать излучение на длине волны ~1,9 мкм, что требует применения специальных дополнительных лазерных генераторов и в конечном итоге приводит к снижению эффективности всей системы.

В последние годы появились сообщения о лазерной генерации в кристаллах, активированных ионами Tm^{3+} : $Tm:Lu_2O_3$ и $Tm:Sc_2O_3$, в которых при диодной накачке на ~800 нм удаётся получить мощную и эффективную генерацию на длинах волн 2067 нм и 2116 нм соответственно [1]. К сожалению, из-за высокой температуры плавления (~2450 °C) изготовление этих материалов затруднено и в настоящее время освоено только в одной лаборатории мира (в Институте лазерной физики Гамбургского университета, Германия) [1]. Альтернативным методом изготовления активных элементов на основе полуторных оксидов является спекание керамики.

Настоящая работа посвящена исследованию оптических и спектроскопических свойств новой лазерной керамики Tm:Lu₂O₃, впервые изготовленной по заказу авторов компанией Konoshima Chemicals Co. (Япония).

С помощью спектрофотометра «Perkin-Elmer Lambda 9» исследовался спектр поглощения керамики Tm:Lu₂O₃ в диапазоне длин волн от 500 нм до 2500 нм с шагом 0,2 нм. Измеренный при комнатной температуре спектр показывает наличие линий поглощения из основного состояния ${}^{3}\text{H}_{6}$ (рис., *a*).

В диапазоне накачки (от 700 нм до 900 нм) проводились дополнительные измерения с шагом 0,1 нм (рис., δ). С использованием результатов измерений рассчитано сечение поглощения: в пике на 796 нм оно составило $\sigma_{abs} \approx 3.8 \times 10^{-21}$ см², а в максимуме другой линии на 811 нм – $\sigma_{abs} \approx 3.2 \times 10^{-21}$ см². Сравнение измеренного спектра поглощения керамики с опубликованными данными по кристаллам Tm:Lu₂O₃ показывает их значительное сходство как по положению спектральных максимумов и их ширине, так и по величине сечения поглощения (рис., δ : кривая 1 – измеренные данные, кривая 2 – из литературы [1]).

Также исследовалась кинетика изменения показателя преломления в керамике Tm:Lu₂O₃ после интенсивного короткого (10–15 нс) импульса накачки на длине волны 792 и 808 нм с помощью поляризационного интерферометра Жамена-Лебедева. Была выявлена сложная динамика возбуждения активных центров, указывающая на необходимость учёта кросс-релаксационных процессов в теоретическом описании Tm-содержащих сред.

Проведённые исследования характеристик керамики Tm:Lu₂O₃ выявили малое отличие от спектральных и оптических характеристик монокристалла, что в купе с более простым и дешёвым технологическим процессом изготовления больших по размеру образцов, указывают на хорошие перспективы для получения мощной и эффективной лазерной генерации в двухмикронном диапазоне длин волн с помощью этой активной среды.

- Scholle K., Lamrini S., Koopmann P., Fuhrberg P. //B KH.: Frontiers in Guided Wave Optics and Optoelectronics /Ed. by Bishnu Pal. – Croatia: InTech, 2010. P.674.
- [2] Грачев С. Гольмиевый лазер в медицине. М.: Триада-Х, 2003, 240 с.
- [3] Henderson S.W., Hale C.P., Magee J.R., Kavaya M.J., Huffaker A.V.//Opt. Lett. 1991. V.16. P.773.
- [4] Walsh B.M. //Laser Physics. 2009. V.19. P.855.
- [5] Moulton P.F., Rines G.A., Slobodtchikov E.V., Wall K.F., Frith G., Samson B, Carter A.L.G. //IEEE J. of Selected Top. in Quant. Electr. 2009. V.15. P.85.