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ABSTRACT

We investigate theoretically and numerically the activation process in a single-out and coupled FitzHugh-
Nagumo elements. Two qualitatively different types of the dependence of the mean activation time and of
the mean cycling time on the coupling strength monotonic and non-monotonic have been found for identical
elements. The influence of coupling strength, noise intensity and firing threshold on the synchronization regimes
and its characteristics is analyzed.
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1. INTRODUCTION

Stochastic excitable dynamics of the type demonstrated by FitzHugh-Nagumo (FHN) elements underlies many
systems in physiology and neuroscience.1 In particular, a variety of nontrivial phenomena observed in coupled
excitable systems perturbed by noise have attracted much attention recently. There are many resonance-like
and synchronization-like effects in both small (two-element) and large (chains and lattices) ensembles of coupled
bistable, excitable and oscillatory elements. Examples include e.g. stochastic2–4 and coherence5–10 resonance,
stochastic synchronization,11–14 and noise-induced and noise-enhanced propagation of fronts15 of excitation.

However, the theory of noise-induced activation and synchronization in such far from equilibrium systems is
still far from being complete.

In this work we investigate theoretically the activation rate of a single-out FHN element as a function of
noise intensity and parameters of the driving force. Theoretical results are compared with the results of Monte
Carlo simulations. This research allow us to gain further insight into the stochastic dynamics of synchronization
of globally-coupled FNH elements. For the later case it has been found in numerical simulation that increasing
the coupling strength can either increase or decrease mean activation times. Two qualitatively different types
of the dependence of the mean activation time and of the mean cycling time on the coupling strength have been
found for identical elements: (i) non-monotonic, when control parameters are close to the pint of Andronov-
Hopf bifurcation and the noise intensity is relatively large, (ii) monotonic growth and saturation, when control
parameters are away from the bifurcation point and the noise intensity is relatively small. For intermediate
values of parameters the crossover between these two types of behavior takes place. For limiting cases of
independent and ultimately strong coupled excitable elements dependence of mean activation time on noise
intensity is accounted theoretically. By investigation of collective noise-induced dynamics in coupled non-
identical FitzHugh-Nagumo elements synchronization-like phenomena of firing have been found. The influence
of coupling strength, noise intensity and firing threshold on the synchronization regimes and its characteristics
is analyzed.
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2. MODEL AND BASIC DEFINITIONS

Let us consider the noisy perturbed Fitz Hugh-Nagumo model described by the equations:

ẋ = F (x, y) = x− x3/3− y

ẏ = εG(x, y) +
√
Dζ(t) = ε(x+ a) +

√
Dζ(t),

(1)

where ζ(t) is white gaussian noise with correlation function < ζ(t)ζ(t + τ) >= Dδ(τ), ε is a small parameter,
(see, for example5, 16). The curve F (x, y) = 0 has an N -like form, while G(x, y) = 0 is a strait line. There is only
one steady sate of the system (1) corresponding to the point of intersection A(x0, y0) of the curves F (x, y) = 0
and G(x, y) = 0 in zero-noise limit. This steady state has coordinates x0 = −a, y0 = −a − a3. In the absence
of noise all the trajectories of the system (1) will be attracted to A(x0, y0).

In the presence of noise the state A(x0, y0) becomes metastable, because relatively large fluctuations can
kick the system away from the point A into the basin of attraction of the branch h+(x). The system then moves
slowly along this branch, jumps back to the left branch and returns to the vicinity of steady state. The process
of excitation repeats, and the resultant time series x(t) has a sequence of noise-induced pulses of excitation.
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Figure 1. (a) Typical phase diagram for an excitable system, including the curves F (x, y) = 0 and G(x, y) = 0, and
stochastic trajectories. Curves h−(x), h+(x), and h0(x) are left and right stable branches of slow motion, and unstable
branch correspondingly. A, B, C, D, and E indicate characteristic points of the motion of the system in a course of
excitation. (b) Random pulses of excitation x(t) and y(t)

.

On the phase plane (x, y) we will distinguish two main types of motion: (i) activation, i.e. motion from the
vicinity of the steady state across the line, separating basins of attraction of left h−(x) and right h+(x) stable
branches of slow motion (what we shall name separatrix ys(x)) towards the line x = 0 (approximately between
points A and B); and (ii) excursion, i.e. motion after the first passage of the line x = 0 along the branches
h+(x) and h−(x) back into the vicinity of the stable state (approximately from point B through points C,D,E,
to point A). In our numerical experiments we will consider three characteristics timescales of this behaviour:
the activation time tA, the excursion time tE , and the total time of the cycle ABCDE: tC = tA + tE .
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3. ACTIVATION TIME OF SINGLE FHN-ELEMENT

In the presence of noise the system dynamics is characterized∗ by the evolution of the probability density ρ(x, t)
described by the Fokker-Planck equation (FPE)17:

∂ρ

∂t
=

∂

∂xi

(
−ρFi +

D

2
∂

∂xj
Qijρ

)
, (2)

where Q is the diffusion matrix. In the particular case of the 2-dimensional system (1) F1 = F (x, y), F2 =
G(x, y), and Qij = δi2δj2. Since the FPE has the form of a continuity equation, with current density J [ρ]
equalling ρFi − D

2
∂

∂xj
Qijρ, the escape rate R may be computed as a flux of probability though the boundary

∂Ω of the basin of attraction Ω of a metastable state.

R ∼
∫

∂Ω

J[ρ] · ndl�
∫

Ω

ρdx, (3)

where the of probability distribution density ρ(x, y) in the case of small noise is often written as:

ρ(x, y) = z(x) exp{−S(x, y)/D} (4)

(see.18, 19 Here the action function S(x) plays the role of a non-equilibrium potential20 and z(x) is a prefactor.

An asymptotic analysis shows18–23 that to the leading order of approximation in D, function S satisfies a
Hamilton-Jacobi equation for a classical action in the form H(x,∇S) = 0, where H(x, p) is the Hamiltonian
function equals 1

2Qijpipj +Ki(x)pi.

The pattern of extreme trajectories and the action function along these trajectories are found by integrating
Hamiltonian equations simultaneously with the equation for the action:

ẋi = Ki +Qijpj ṗi = −∂Kj

∂xi
pj , Ṡ =

1
2
Qijpipj . (5)

with initial conditions (see e.g.18):

xi(t0) = x
(0)
i (t0) + δxi, pi(t0) = S

(0)
ij δxj , S(t0) =

1
2
S

(0)
ij δxiδxj . (6)

For a particular case of the system (1)  x(0) = {x(0), y(0)} are coordinates of the stable state A, where the
function S( x) reaches its minimum. S

(0)
ij = S

(0)
ij

∣∣∣

x=
x(0)

is the value of the Hessian matrix Sij = (∂i∂jS) in the

point  x(0) , and δxi is a small deviation in xi-direction from the stable state.

The set of trajectories solutions of (5) emanating from the stationary state of the system (1) covers its
phase space. To obtain S

(0)
ij we have taken into account, that near the stable state the stationary probability

distribution (4) takes the form (17, 21, 24):

ρ(x, t) ∼=
√
det(S(0))/(2πD)n exp

(
− 1
2D

S
(0)
ij δxiδxj

)
. (7)

On linearization Fi near the stable state the corresponding term in the Fokker-Planck equation (2) takes the
form

∂

∂xi
(ρFi) = Bij

∂ρ

∂xi
xj , where Bij =

∂Fi

∂xj

∣∣∣∣

x=
x(0)

(8)

∗Here we neglect the time of motion from the separatrix to the line x = 0, which is much smaller compered to
activation time exponentially growing with noise intensity decreasing.
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On substituting (7) into the linearized Fokker-Planck equation (see (2),(8) we have (see e.g.25)

Ẇ = −BW −WBT −WQW, (9)

where W = (S(0)), B = (Bij).

Equation (7) can also be written in the form17, 21, 24:

ρ( q) = const exp

{
−Dy δx

2 − 2Bxy δx δy +Dx δy
2

2
(
Dx Dy −B2

xy

)
}
. (10)

Therefore by solving equation (9) we obtain values of the components of covariation matrix of Gaussian distri-
bution near the stable state (neglecting the possibility of escape from the neighborhood of these stable state):

Dx =
1
2

D

ε (a2 − 1)
, Bxy = −D/(2 ε) , Dy =

1
2
D ((a2 − 1)2 + ε)

ε (a2 − 1)
(11)

Let us introduce parameter
µ =

√
2σy/r, (12)

where σy =
√

Dy and r ∼= max{ε, (a − 1)2} is the distance from the steady state to the separatrix ys(x).
Following18, 24, 26 in the next-to leading order of approximation in D of the solution of Fokker-Planck equation
we can obtain equations for the prefactor z and Hessian matrix Sij = (∂i∂jS):

dz

dt
= z

(
∂iKi +

1
2
QijSij

)
(13)

Ṡij = −pm∂i∂jKm − Sim∂jKm − Sjm∂iKm − SjmSikQkm

We mention finally that the mean activation time can now be represented in the form:

Tact = 〈tA〉 = T0 exp {Sm(D)/D} , (14)
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Figure 2. The dependence of activation times on the noise intensity in the small- and intermediate-µ (small- and
intermediate- noise) cases: o - results of numerical simulation and averaging over 5000 activation escapes; — and
diamonds - theoretical prediction using (3) and probability current integrating over the boundary; . . . - theoretical
prediction using (14).
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where Sm(D) is a minimum value of the quasipotential on the separatrix in the presence of finite noise and T0

is a prefactor having dimension of time. It should be mentioned that due to finite noise corrections (in contrast
to the case of gradient field) both prefactor and the value Sm(D) depend on the noise intensity D.

The theoretical prediction (3), (14) for the value of Tact(D) are compared with the results of numerical
simulation for singled-out FHN element in Fig. 2. For this comparsion we have chosen the following values of
parameters: a = 1.05, ε = 0.05, D = 3.5 ·10−5. It can be see that both methods give good qualitative estimation
for µ � 1 and are in good quantitative agreement for µ � 0.5

4. INFLUENCE OF COUPLING ON STATISTICAL CHARACTERISTICS OF
ACTIVATION AND CYCLE TIMES

In this section we analyze cooperative dynamics, namely the synchronization effects, in the system of two
coupled FHN elements:

ẋ1 = x1 − x3
1/3− y1 + C(x2 − x1),

ẏ1 = ε (y1 + a1) + ζ1(t),
ẋ2 = x2 − x3

2/3− y2 + C(x1 − x2),
ẏ2 = ε (y2 + a2) + ζ2(t),

(15)

where ai are parameters of the partial element; C is the coupling coefficient; ζ1,2(t) are the independent com-
ponents of a two-dimensional Gaussian white noise with correlation functions 〈ζi(0)ζj(t)〉 = Dδijδ(t). In our
numerical experiments we take both ai slightly larger than one, ε = 0.05. In this section we will use simulation
to obtain as a function of the coupling strength the mean activation time Tact, and the mean cycle time Tcycl.
By varying the value of µ, three different types of behavior can be distinguished. Therefore, we will consider
three intervals of µ: small µ, large µ and intermediate µ.

4.1. Small activation energy (µ > 1)

In this case we take the parameter a near to the bifurcation point (i.e. close to one) and relatively large noise
intensity D such that µ is bigger then unity. The results of the simulation of activation time Tact and time of the
full cycle Tcycl are shown in Figure3(a). Both Tact and Tcycl of subsystems initially decrease and subsequently
increase to reach constant values in the absence of coupling.
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Figure 3. (a) The Tcycl (squares) and Tact (stars) for two coupled identical FHN-elements with parameters a = 1.01,
D = 0.001. (b) The same quantities with D = 0.0001, a = 1.075, and a = 1.1.
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To explain this result we note that the activation process is analogous to the escape over a barrier from a
potential well. For the chosen parameter values there is almost no barrier, and we observe not activation but
diffusion through the boundary. Therefore the activation time is small in comparison to the excursion time.
The small decreasing of Tact and Tcycl occur because one starting the activation process FHN-element raise the
probability of activation for an other element.

4.2. Large activation energy (µ 
 1)

In this case the parameter a is not very close to one, and the noise intensity is very small. Simulation results
are shown in Fig. 3(b). The behavior of the system is qualitatively different from the previous case: both Tact

and Tcycl increase monotonically with increasing coupling strength of elements, and Tcycl ≈ Tact.

It can be seen from Fig. 3(b) that Tact initially increases quasiexponentially and then come to saturation.
The level of saturation for a = 1.075 is six times larger then the initial value (in the absence the coupling); for
a = 1.1 this level is twelve times larger then the initial value.

Because in this case the activation time is much larger than the excursion time, the system spends most of its
time near the stable state. We therefore assume that both elements are initially situated in the neighbourhood
of the stable state. If the coupling is extremely small the activation processes from the neighbourhood of the
stable states of each FHN element can be considered as independent. But already for an intermediate strength
of coupling the existence of coupled element hampers the escape and leads to a significant increase of Tact. We
can say that in this case there are two counteracting tendencies. (i) If both elements are deactivated the Tact of
each element is increased due to the coupling. (ii) After one of the elements has been activated the Tact of the
second element is decreased due to the coupling (as compared to the Tact of uncoupled element). For the values
of coupling considered in this subsection the first tendency is the stronger. An increase of coupling strength
will eventually lead to the synchronized activation of both elements.

4.3. Intermediate activation energy

For intermediate values of the control parameter, the Tact initially decreases with increasing coupling strength,
and then increases considerably and becomes ∼1.2 – 3.0 times larger than the Tact value for uncoupled element.

4.4. Theoretical explanation

To estimate the maximal growth the Tact due to the coupling, we should bear in mind that, in the case of small
noise the activation time being the special case of the mean escape time Tesc from the basin of attraction of
stable state can often be presented in the form (see section (3), equation (14)):

T single
act = Tesc = T0 exp

{
S(D)
D

}
, (16)

where T0 is a co-factor independent of (or only weakly dependent on) the noise intensity, S(D) is the quasipo-
tential or action for the optimal escape trajectory going in the point corresponding the maximum of transverse
component of probability density current J[ρ] across the separatrix. To take account of corrections induced by
the non-zero noise intensity, we should calculate probability density current J[ρ] using the approach suggested
in24 and articulated shortly in section (3).

We can also obtain the analogous result for a single element with variables x+ = (x1+x2)/2 and y+ = (y1+y2)/2
defined by equations

ẋ+ = x+ − 1
3
x+

3 − y+

ẏ+ = ε (x+ + a+ − g y+) + ζ+(t) ,
(17)

with noise intensity D+ = D/2. Then

T coupl
act = T0 exp

{
2S(D/2)

D

}
. (18)
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Figure 4. (a) The left part shows the Tcycl (squares) and Tact (stars) for two coupled identical FHN-elements with
parameters a = 1.05, D = 0.0007. (b) The right part shows the activation time versus noise intensity: numerical
simulation data for T single

act (circles) and T coupl
act (squares) are compared with theoretical estimates of T coupl

act.estim (triangles).

Using (16) and (18), our estimation for the mean activation time of the strongly coupled elements can finally
be written as:

T coupl
act.estim = T single

act exp
{
2S(D/2)− S(D)

D

}
. (19)

In Fig. 4(b) we compare the dependencies of T single
act , T coupl

act.estim with experimentally obtained values T coupl
act

in strong coupling case C = 10 for a = 1.05. Given that 2S(D/2) − S(D) � 2S(D) − S(D) = S(D), one can
see that the relation (19) can be used to describe the influence on the Tact and Tcycl of all the values and types
of coupling discussed: for S(D)/D 
 1 we obtain the case of large µ; for S(D)/D > 1 - the case of small µ;
and the case of intermediate µ for S(D)/D � 1.
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