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The Fermi-Pasta-Ulam (FPU) paradox consists of the nonequipartition of energy among normal modes
of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a
periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from
the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed
here q-breathers (QB). They are characterized by time periodicity, exponential localization in the q-space
of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in
the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable
to other nonlinear lattices as well.
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Fifty years ago Fermi, Pasta, and Ulam (FPU) published
their celebrated paper on thermalization of arrays of parti-
cles connected by weakly nonlinear strings [1], bringing
forth a fundamental physical and mathematical problem of
the energy equipartition and ergodicity in nonlinear sys-
tems. Series of numerical simulations showed that energy,
initially placed in a low-frequency normal mode of the
linear problem with a frequency !q and a corresponding
wave number q, stayed almost completely locked within a
few neighbor modes, instead of being distributed among all
modes of the system. Moreover, recurrence of energy to the
originally excited mode was observed.

Much effort has since been expended to understand and
explain the FPU results (see [2– 4] for reviews). Two major
approaches were developed. The first one, taken by
Zabusky and Kruskal, was to analyze dynamics of the
nonlinear string in the continuum limit, which led to a
pioneering observation of solitary waves [5]. The second
approach, followed by Izrailev and Chirikov, pointed to the
existence of a ‘‘stochasticity threshold’’ in the original
FPU system [6]. For strong nonlinearity (or simply large
energies) the overlap of nonlinear resonances [7] leads to
strong dynamical chaos, destroying the FPU recurrence
and ensuring fast convergence to thermal equilibrium. If
nonlinearity is below a (size-dependent) ‘‘stochasticity
threshold,’’ the dynamics of the chain remains similar to
that of the unperturbed (linear) system for large time
scales. Later studies [8,9] showed that the ‘‘local’’ dynam-
ics of four consecutive low-frequency modes may become
substantially chaotic, while almost all initial energy stays
localized in these modes during the time of computation.
The redistributed mode energies fall exponentially with
increasing mode numbers in this regime (coined ‘‘weak
chaos’’) and the energy flow to higher frequency modes
was argued to be exponentially slow (due to Arnold
diffusion).

The results obtained through this second approach lead
one to formulate some important questions. First, since the
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dynamics below the stochasticity threshold is localized in
q-space for long times, do time-periodic trajectories with
almost all energy locked in a single mode for infinite times,
coined here q-breathers (QB), exist, and are they close to
the ones studied by FPU? Second, are the stability thresh-
olds of such QBs related to the various stochasticity thresh-
olds mentioned above? And, finally, is the concept of QBs
applicable also for other spatially extended nonlinear lat-
tices, including generalizations to higher lattice dimen-
sions? A strong motivation for this study is the fact that
in the q-space representation we deal with oscillators that
are uncoupled in the limit of small amplitudes, and, more-
over, with frequencies being different for each mode.
Nonlinearity induces coupling between oscillators. That
is reminiscent of the case of discrete breathers (DB) that
are time-periodic and spatially localized excitations on
networks of interacting identical anharmonic oscillators,
which survive continuation from the trivial limit of zero
coupling [10]. Notably, DBs exist also in FPU lattices [11].

The FPU system is a chain ofN equal masses coupled by
nonlinear strings with the equations of motion containing
quadratic (the � model)

�xn��xn�1�2xn�xn�1�����xn�1�xn�
2��xn�xn�1�

2�

(1)

or cubic (the � model)

�xn��xn�1�2xn�xn�1�����xn�1�xn�
3��xn�xn�1�

3�

(2)

interaction terms, where xn is the displacement of the nth
particle from its original position, and fixed boundary
conditions are taken x0 � xN�1 � 0. A canonical trans-

formation xn�t� �
��������
2

N�1

q
�N
q�1Qq�t� sin�


qn
N�1� takes into the

reciprocal wave number space with N normal mode coor-
dinates Qq�t�. The equations of motion then read
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FIG. 1. Energy distributions between q modes in QBs for
different � versus q in linear and log scales with analytical
estimations of the QBs exponential localization (dashed lines).
Parameters are E � 1:58, q0 � 3, N � 32. Only odd modes are
shown (see text). The symbols for q � 3; 9; 15; 21; 27 represent
upper bounds, and the real mode energies might be even less.
Note that QBs persist even far beyond the stability threshold (see
Fig. 2).
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�Qq �!2
qQq � �

��������������������
2�N � 1�

p XN
i;j�1

Aq;i;jQiQj (3)

for the FPU-� chain (1) and

�Qq �!2
qQq � �

�
2�N � 1�

XN
i;j;m�1

Cq;i;j;mQiQjQm (4)

for the FPU-� chain (2), where !q � 2 sin�
q=2�N � 1��
are the normal mode frequencies, and Aq;i;j and Cq;i;j;m are
coupling coefficients [8]. For small amplitude excitations
the nonlinear terms in the equations of motion can be
neglected, and according to (3) and (4) the q oscillators
get decoupled, each conserving the energy Eq �

1
2 �

_Q2
q �

!2
qQ2

q� in time. Especially, we may consider the excitation
of only one of the q oscillators, i.e., Eq � E � 0 for q �

q0 only. Such excitations are trivial and unique time-
periodic and q-localized solutions (QBs) for � � � � 0.

In order to guarantee continuation of this periodic orbit
into the case � � 0 or � � 0 and following [10], we
conclude that it is enough to request the nonresonance
condition n!q0 � !q�q0 , which is the generic case for a
finite system size N (here n is an integer) (see also [12]).
We show that the orbit will stay localized in q-space at
least up to some critical nonzero value of � or � [13]. The
above mentioned value is correct also for free boundary
conditions. For periodic boundary conditions twofold de-
generacies of the normal modes at the harmonic limit have
to be removed, allowing one again to construct QBs that
are continued from standing waves.

We compute QBs as well as their Floquet spectrum
numerically using well developed computational tools
[11], and compare the results with analytical predictions,
derived by means of asymptotic expansions. As a zero-
order approximation for the numerical computation we
take the q0th linear mode: xn�t� �

��������
2

N�1

q
Qq0�t� sin�


q0n
N�1�.

For the � model the initial conditions are Qq�t � 0� � 0

and _Qq0�t � 0� �
����������������������������������������������
2E��q�q0

_Q2
q�t � 0�

q
. We map the

space of ~y � f _Qq�q0g onto itself by integrating the initial
condition up to the time when Qq0�t� � 0, _Qq0�t�> 0
again: ~yn�1 � ~F � ~yn�. A periodic orbit is a fixed point of
that map. The vector function ~G � ~F � ~y� � ~y is used to
calculate the Newton matrix N � @G� ~y�i=@yj. The itera-

tion procedure ~y0 � ~y�N �1 ~G� ~y� continues until the
required accuracy " is obtained: k ~F � ~y� � ~yk=k ~yk< "
(we have varied " from 10�5 to 10�8), where k ~yk �
maxfjyijg. For the � model we used a modified scheme
choosing xs�t � 0� � 0 where s � ��N � 1�=2q0� corre-
sponds to the antinode of the mode Qq0 . We map the phase
space ~r (excluding xs) onto itself integrating until xs�t� �
0, _xs�t�> 0 again. With the above notations we use a Gauss
method to solve the equations ~G� ~r� � N � ~r� ~r0� for the
new iteration ~r0 and do final corrections to adjust the
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correct energy E. To compute the linear stability of the
found QB, we linearize the phase space flow around it and
map that flow onto itself by integrating over one period of
the QB. The corresponding symplectic Floquet matrix can
be computed numerically and subsequently diagonalized.
If all eigenvalues � have absolute value 1, the QB is stable;
otherwise it is unstable [11].

First, we apply our method to the � model with q0 � 3
and E � 1:58, which is very close to the value 1.5 chosen
in [8]. We obtain QBs that are exponentially localized in
q-space (Fig. 1). The smaller �, the faster is the decay of
the energy distribution with increasing wave number q.
Note that because of the parity symmetry of the � model
[Eq. (2) is invariant under xn ! �xn for all n] only odd q
modes are excited by the q0 � 3 mode and get coupled
[14]. In Fig. 2 we plot the absolute values of the Floquet
eigenvalues of the computed QBs versus � for different
system sizes N. QBs are stable for sufficiently weak non-
linearities (all eigenvalues have absolute value 1). When �
exceeds a certain threshold, two eigenvalues get absolute
values larger than unity (and, correspondingly, another two
get absolute values less than unity) and a QB becomes
unstable. Remarkably, unstable QBs can be traced far
beyond the stability threshold, and, moreover, they retain
their exponential localization in q-space (Fig. 1) [15]. As�
is increased further, new bifurcations of the same type are
observed.

By an asymptotic expansion of the solution to (4) in
powers of the small parameter � � �=�N � 1�, we esti-
mate the shape of a QB solution Q̂i�t� localized in the mode
2-2
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FIG. 3. Stable QB solutions for � � 0:025 and � � 0:25, E �
0:077, N � 32, and q0 � 1; the latter corresponds to the original
numerical FPU-� study [1]. An analytical estimation of the QB
exponential localization in case � � 0:025 is shown with a
dashed line.
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FIG. 2. Absolute values of Floquet multipliers j�ij of QBs
with the energy E � 1:58 and q0 � 3 and different N versus �.
Symbols: numerical results; lines: analytical results.
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q0. The energies of the modes q0, 3q0; . . . ; �2n� 1�q0; . . .
are given by

E�2n�1�q0 � �2nEq0 ; � �
3�Eq0�N � 1�

8
2q20
; (5)

up to an error of the order �2n� 1�2q20=N
2. Dashed lines in

Fig. 1 are obtained using (5) and show very good agree-
ment with the numerical results.

Using standard secular perturbation techniques, we ap-

proximate the frequency � of the QB solution as � �

!q0�1�
9�Eq0
8�N�1� �O� �2

�N�1�2
��. The instability threshold ob-

served in Fig. 2 can be obtained analytically by making a
replacement Qi � Q̂i�t� �  i in the equations of motion
(4) and linearizing the resulting equations with respect to
 :

���A�� h�1� cos2�t�B��O�h2�� � 0; (6)

where � � � i� is a vector, A � �"ij!2
i � is a diagonal ma-

trix, B � �bij� is a coupling matrix, and h � 3�E=2�N �

1� is a small parameter. We analyze parametric resonance
in (6), treating h and � as independent parameters. In the
limit h ! 0 the equilibrium point � � 0 is stable for all
values of � except for those that satisfy !k �!l �
2n� � 2n�nkl where n � 1, and the modes k and l belong
to the same connected component of the coupling graph
whose connectivity is defined by the matrix B.

We seek for a solution to (6) at � � �nkl�1� "�, " �

O�h�, in the form � � ��1
m��1fme�i!�z�2im��t � c:c:,

where ~! � !k�1� "� � �!l�1� "� � 2n�, fm are un-
known complex vector amplitudes, and z � O�h� is a small
unknown complex number.

The nearest primary resonance corresponds to k � q0 �
1, l � q0 � 1, n � 1 [8]. In the vicinity of the bifurcation
point the absolute values of the Floquet multipliers in-
volved in the resonance are obtained as
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j�ij � 1�

3

4�N � 1�2

����������������������������������
R� 1�O

�
1

N2

�s
; (7)

where R � 6�E�N � 1�=
2. The bifurcation occurs at
R � 1�O�1=N2�. The result (7) is plotted in Fig. 2 with
solid lines for N � 32, 64, and 128, demonstrating good
agreement with the numerical results. The agreement im-
proves with increasing N [16]. The instability threshold for
QB orbits (Fig. 2), which is obtained analytically using the
parameter R (7), coincides with the criterion of transition
to weak chaos reported by De Luca et al. [8].

We have used one of the original parameter sets of the
FPU-� study � � 0:25, E � 0:077, N � 32 [1] (and add
to that the case � � 0:025 as well for comparison) to find
stable exponentially localized QB modes with most of the
energy concentrated in q0 � 1 (Fig. 3) [15]. We use again
an asymptotic expansion of the solution to (3) in powers of
the small parameter ) � �=

�������������������
2�N � 1�

p
and obtain that the

energies of the modes q0, 2q0; . . . ; nq0, are given by

Enq0 � *2n�2n2Eq0 ; * �
�

��������
E�0�
q0

q
�N � 1�3=2


2q20
: (8)

The dashed line in Fig. 3 is obtained using (8) in case � �
0:025, E � 0:077, N � 32, q0 � 1 and shows very good
agreement with the numerical results [17].

How are QB solutions related to the original FPU stud-
ies? A QB requires specific initial conditions, which were
not used in earlier numerical studies. However, nearby
quasiperiodic solutions are expected to retain stability
and exponential localization of their QB generator for
times long compared to the QB period. In Fig. 4 we
compare snapshots of displacements at different times
obtained for the original FPU trajectory in [1] and for the
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FIG. 4. Snapshots of displacements (a) of the original FPU
trajectory for � � 0:25, E � 0:077, N � 32 [1], and (b) of the
corresponding exact QB solution from Fig. 3 taken at different
times.
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numerically exact QB solution from Fig. 3 for � � 0:25
and observe similar evolution patterns. Moreover, we took
a series of points on a line that connected initial conditions
of the FPU trajectory (Eq�1 � 0) with the numerically
exact QB solution from Fig. 3. For each of these points
we integrated the corresponding trajectory and measured
the average deviation � from the QB orbit. The depen-
dence of � on the line parameter turns out to be an almost
linear one, starting from zero when being very close to the
QB orbit, and ending with a maximum value when being
close to the FPU trajectory. That supports the expectation
that the FPU trajectory is a perturbation of the QB orbit.
The FPU recurrence is gradually appearing with increasing
� and is thus directly related to the regular motion of a
slightly perturbed QB periodic orbit, which we tested also
numerically.

In conclusion, we report on the existence of q-breathers
as exact time-periodic low-frequency solutions in the non-
linear FPU system. These solutions are exponentially lo-
calized in the q-space of the normal modes and preserve
stability for small enough nonlinearity. They continue from
their trivial counterparts for zero nonlinearity at finite
energy. The stability threshold of QB solutions coincides
with the weak chaos threshold in [8]. Persistence of exact
stable QB modes is shown to be related to the FPU para-
dox. The FPU trajectories computed 50 years ago are
perturbations of the exact QB orbits. Remarkably, local-
ization in q-space persists even for parameters when the
QBs turn unstable. The concept of stable QBs and their
impact on the evolution of excitations in the FPU system is
expected to apply far beyond the stability threshold of the
QB solutions reported in the present work. Generalizations
to higher dimensional lattices and other Hamiltonians are
straightforward, due to the weak constraint imposed by the
06410
nonresonance condition needed for continuation. QBs can
also be expected to contribute to peculiar dynamical fea-
tures of nonlinear lattices in thermal equilibrium, e.g., the
anomalous heat conductivity in FPU lattices [3].
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