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Three Types of Transitions to Phase Synchronization in Coupled Chaotic Oscillators
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We study the effect of noncoherence on the onset of phase synchronization of two coupled chaotic
oscillators. Depending on the coherence properties of oscillations characterized by the phase diffusion,
three types of transitions to phase synchronization are found. For phase-coherent attractors this
transition occurs shortly after one of the zero Lyapunov exponents becomes negative. At rather strong
phase diffusion, phase locking manifests a strong degree of generalized synchronization, and occurs
only after one positive Lyapunov exponent becomes negative. For intermediate phase diffusion, phase
synchronization sets in via an interior crises of the hyperchaotic set.
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FIG. 1. Upper panel (a)–(c): projections of the attractors
of the Rössler systems (1) onto the plane �x; y�; middle
panel (d)–(f): projections onto � _xx; _yy�; lower panel (g)–
to CPS in dependence on the coherence properties of
motions. This is demonstrated for the paradigmatic sys-
tem of two coupled nonidentical Rössler oscillators:

(i): distribution of the return times T. The parameters are ! �
0:98 and a � 0:16 (a),(d),(g), a � 0:22 (b),(e),(h), and
a � 0:28 (c),(f),(i).
Phase synchronization (PS) of chaotic oscillators
[1] and rotators [2] has been detected in many natural
[3] and engineering [4] systems. In spite of the fact there
are a large number of publications in this field (for
a review, see [5]), several important aspects have not
been well understood. It is still unknown which type of
chaotic oscillators can be synchronized in phase. How
does the structure of the chaotic attractor influence the
transition to PS? Until now chaotic phase synchronization
(CPS) has been mainly observed for chaotic attractors
with rather coherent phase dynamics. These attractors
have a relatively simple topology of oscillations and a
well-pronounced peak in the power spectrum, which
allows the introduction of the phase and the characteristic
frequency of motions. Thus, CPS in this case is rather
similar to PS of periodic oscillations in the presence of
small noise. The transition to PS is then accomplished by
the transition of a zero Lyapunov exponent to negative
values. However, such a phase-coherent dynamic is a
strong restriction for applications. We often meet non-
coherent attractors and rather broad band power spectra.
Then a phase of the oscillations may not be defined
straight forwardly, and there in general does not exist
only one single characteristic time scale. In contrast to
phase-coherent attractors, the analogy with noisy peri-
odic oscillators is then no longer evident, and whether
some phase synchronized state can be achieved is quite
unclear.

To treat such systems, we propose in this Letter
a method to more generally define a phase. This allows
one to study CPS in systems of coupled chaotic oscillators
with even strongly noncoherent phase properties. Based
on this approach, we find three possible types of transition
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_xx1;2 ��!1;2y1;2 � z1;2;

_yy1;2 �!1;2x1;2 � ay1;2 � d�y2;1 � y1;2�;

_zz1;2 � 0:1� z1;2�x1;2 � 8:5�;

(1)

where d is the coupling strength. !1;2 determine the mean
frequency of the oscillators in the case of phase-coherent
attractors. In our simulations we take !1 � 0:98 and
!2 � 1:02. The parameter a 2 �0:15:0:3� governs the
topology of the chaotic attractor. When a is below a
critical value ac (ac 	 0:186 for !1 � 0:98 and ac 	
0:195 for !2 � 1:02), the chaotic trajectories always
cycle around the unstable fixed point �x0; y0� 	 �0; 0� in
the �x; y� subspace, i.e., max�y� > y0 [Fig. 1(a)]. In this
case, the rotation angle � � arctanyx can be defined as the
phase, which increases almost uniformly; i.e., the oscil-
lator has a coherent phase dynamic. Beyond the critical
2003 The American Physical Society 024101-1
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FIG. 2. Phase diffusion coefficient D� (3) vs a. ! � 0:98.
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value ac, the trajectories no longer always completely
cycle around �x0; y0�, and some max�y�< y0 occur, which
are associated with faster returns of the orbits [Fig. 1(b)].
The attractor becomes a funnel attractor. Such earlier
returns in the funnel attractor happen more frequently
with increasing a [Fig. 1(c)]. For the funnel attractors,
usual (and rather simple) definitions of phase [1] are no
longer applicable.

We propose, therefore, another approach to define the
phase based on the general idea of the curvature of an
arbitrary curve [6]. For any two-dimensional curve ~rr1 �
�u; v� the angle velocity at each point is � � �ds=dt�=R,
where ds=dt �

�����������������
_uu2 � _vv2

p
is the speed along the curve and

R � � _uu2 � _vv2�3=2=� _vv �uu� �vv _uu� is the radius of the curva-
ture. If R > 0 at each point, then � � d�

dt �
� _vv �uu� �vv _uu�=� _uu2 � _vv2� is always positive and therefore
the variable �, defined as � �

R
�dt � arctan� _vv= _uu�, is a

monotonically growing angle function of time and can be
considered as a phase of oscillations. Geometrically it
means that the projection ~rr2 � � _uu; _vv� is a curve cycling
monotonically around a certain point.

The above definitions of phase and frequency are gen-
eral for any dynamical system if the projection of the
phase trajectory on some plane is a curve with a positive
curvature. We find that they are applicable to a large
variety of chaotic oscillators, such as Lorenz system
[7], Chua circuit [8], Colpits oscillator [9], extended
Bonhöffer-van der Pol oscillator [10], Anishchenko-
Astakhov generator [11], and the model of the ideal
four-level laser with periodic pump modulation [12].

For phase-coherent as well as funnel attractors in the
Rössler oscillator, projections of chaotic trajectories on
the plane � _xx; _yy� always rotate around the origin
[Figs. 1(d)–1(f), ] and the phase can be defined as [13]

� � arctan
_yy
_xx
: (2)

To see the influence of the noncoherence of the orbits on
the time scales of the oscillations, we calculate the dis-
tribution of the return time T of the orbits between two
successive crossings of the Poincaré section _yy � 0; _xx > 0.
For the phase-coherent attractor (e.g., a � 0:16), T is
located in a relatively narrow interval [Fig. 1(g)]. When
the attractor becomes noncoherent, the earlier returns are
associated with much smaller T, and the distribution
becomes rather broad [Figs. 1(h) and 1(i)]. For intermedi-
ate a (e.g., a � 0:22) one characteristic time scale is still
dominant, while for large a (e.g., a � 0:28) there exist
two relatively well-pronounced time scales. As we will
show below, this causes quite different transitions to CPS
for the funnel attractors.

We measure the degree of noncoherence on time scales
by the phase diffusion coefficient D� defined as

h���t� � h��t�i�2i � 2D�t; (3)

where hi denotes the ensemble average. D� increases in
general with a interrupted by D� � 0 in periodic win-
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dows. For a phase-coherent chaotic attractor, the phase
increases approximately uniformly and D� is rather
small. But for a funnel chaotic attractor the increase of
phase is strongly nonuniform and D� can be a few orders
larger in magnitude (Fig. 2).

We use two criteria to detect the existence of CPS [14]:
locking of the mean frequencies �1 � h�1i � �2 � h�2i
and locking of phase j�2�t� ��1�t�j � const.

To illustrate the transition to CPS for different values of
the parameter a, we inspect the change of the mean
frequency ratio �2=�1 and the spectrum of Lyapunov
exponents (LE) versus the coupling strength d.

Three types of qualitatively different transitions to
CPS in dependence on a are clearly seen in the phase
diagram (Fig. 3).

(i) In the well-studied case in the interval a 2
�0:15; 0:186�, both oscillators have phase-coherent chaotic
attractors. Here the zero LEs are associated with the phase
dynamics. Because of the high degree of coherence of the
motions, i.e., very small D�, phase and frequency locking
occur shortly after the transition of one of the zero LEs to
a negative value. The two largest LEs remain positive, and
the amplitudes of the oscillators are only weakly corre-
lated. A strong correlation of amplitudes sets in only at a
much larger coupling (d > dl3), where one of the positive
LEs becomes negative, and the two systems achieve gen-
eralized chaotic synchronization (GCS) [15].

(ii) A quite different scenario of transition to CPS
takes place for a 2 �0:195; 0:25�, where both chaotic at-
tractors are funnel. Here the curves l1 and l2 are clearly
separated, but both lie below curve l3. The two largest
LEs remain positive during the transition to CPS, which
means that no bifurcation of the hyperchaotic attractor
can be associated with the locking of the phases. CPS
occurs here via a crisis transition inside the hyperchaos,
i.e., via an interior crises of the chaotic set. Such a change
of the internal structure of the attractor is seen by the
projection of phase trajectory on the plane ��1; �2� for d
outside [Fig. 4(a)] and within [Fig. 4(b)] the synchro-
nized regime. In the case of a nonsynchronized state (but
near the transition point), the plot covers practically the
whole plane ��1; �2� with different density. The dense
band corresponds to relatively long epochs of synchroni-
zation. The presence of a trajectory in the rest of the plane
indicates the existence of phase slips. In the synchronized
state the plot is restricted to the narrow bands.

(iii) In the interval a 2 �0:25; 0:3�, curve l1 lies above
curve l3, showing that CPS occurs after one of the posi-
tive LEs passes to negative values, i.e., the transition to
024101-2
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FIG. 3. Critical coupling curves. l1 corresponds to the onset
of CPS, i.e., below this line the oscillations are not synchro-
nized, and above this line the phase and frequency locking
conditions are fulfilled; l2 corresponds to the transition of one
of the zero LEs negative values; and l3 corresponds to zero
crossing of one of the positive LEs. Note that in this figure we
do not separate the cases where the synchronization occurs
between regular and chaotic oscillations.
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GCS. It is important to note that, by GCS, both oscillators
have established a rather strong cross correlation. How-
ever, such a strong relationship is an average property
over the whole attractors, while locally a phase slip
associated to a different number of oscillations in the
two oscillators in a period of time may occur for the
coupling strength d shortly above dl3 , as seen in Fig. 5
for the typical behavior for d 2 �dl3 ; dl1�. CPS appears as
a manifestation of GCS. This property is in contrast to the
above regimes where CPS is a weaker degree of synchro-
nization compared to GCS, and the phases become locked
before a strong correlation of the amplitudes can be
established. Thus, for highly noncoherent oscillations
due to the existence of two distinct characteristic time
scales, a rather strong coupling is necessary to keep both
oscillators in small or larger cycles simultaneously in
order to maintain the phase locking. Otherwise, a phase
slip develops quickly due to the very different time scales
when the two oscillators are on a small and a large cycle,
respectively. That is why phase locking becomes impos-
sible without a strong correlation in the amplitudes.

To gain deeper insight into the transition routes to
synchronized state, we study the scaling properties of
intermittent phase slips near the CPS transition point. For
a phase-coherent attractor very close to the transition
FIG. 4. Projections of trajectories of the Rössler systems for
a � 0:22 on the plane ��1; �2� for the coupling strength d
outside (a) (d � 0:055) and within (b) (d � 0:075) the syn-
chronization region.
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point, phase slips occur very rarely and the average
time interval � between two successive slips is extremely
long and can be described by � 	 exp�kjd� dl1 j

�1=2�
[16]. Away from the critical point quite different scaling
properties of the transitions to CPS are observed for
phase-coherent and funnel attractors (Fig. 6). For phase-
coherent attractors, due to the existence of only one well-
pronounced time scale, the synchronization is achieved
through a smooth frequency locking, and the behavior
can be described by a type-I intermittency scaling law.
While for the funnel attractors there exist small and large
loops of the trajectory rotations. When the coupling is
weak, it appears very often that the first oscillator is on
the small loops while the second oscillator is on the large
loops, or vice versa. This leads to an unpredictable,
oscillatory-like evolution of the �2=�1 ratio. Relatively
close to the critical point, rather strong coupling makes
the oscillators stay simultaneously on small or large loops
for a long period of time. The �2=�1 ratio decreases
monotonically and can be fitted by a straight line in a
large range below the critical point.

The difference in the transitions to CPS may be under-
stood as follows. In [17] it was shown that CPS takes
place in a parameter region where all unstable periodic
orbits (UPO), embedded in the chaotic attractors, are
synchronized. For phase-coherent attractors, periods of
all UPOs are close to each other [see Fig. 1(g)] and the
boundaries of the Arnold tongues corresponding to the
locking of different pairs of UPOs lie in a relatively
narrow region. The approach to CPS thus is associated
to an effective saddle-node bifurcation with small noise
and a type-I intermittency occurs, resulting in the rela-
tively hard transition to CPS. For the funnel chaotic
attractors the distribution of the mean periods of
UPOs is rather broad [see Figs. 1(h) and 1(i)]. Therefore
the coupling strengths corresponding to the onset of
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FIG. 5. (a) Time evolution of phase difference. (b) Variables
_yy1;2 in system (1) for a � 0:2925 and d � 0:179 2 �dl3 ; dl1 �.
Solid and dotted lines correspond to the first and second
oscillators, respectively. In the time interval between dashed
lines the first oscillator produces four rotations in the � _xx1; _yy1�
plane around the origin, but the second oscillator generates
only three rotations, which leads to a phase slip in (a).
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synchronization of different pairs of UPOs are distrib-
uted in a rather large interval. With the increase of d, the
system crosses continuously a series of well-separated
Arnold tongues, resulting in a much slower convergence
to CPS.

In conclusion, we have proposed a general approach to
measure the phase of any dynamical systems based on the
curvature of the projection of trajectories on some plane,
provided that the curvature is positive. Therefore, syn-
chronization in phase can be observed in those chaotic
oscillators where such a plane exists. Using this approach,
we have observed three types of transition to CPS in
dependence on the coherence properties of motions mea-
sured by diffusion of the phase. For small diffusion the
onset of CPS is accompanied by the transition of one of
the zero Lyapunov exponents to negative values. If the
diffusion of the phase is rather strong, phase locking
occurs only after the onset of GCS. For intermediate
diffusion CPS sets in via an interior crises of the hyper-
chaotic attractor. The numerical results indicate that only
these three routes to CPS are possible in systems of
coupled chaotic Rössler oscillators. Our numerical ex-
periments (not presented here) with other chaotic dy-
namical systems [7–12] (see also [18]) and recent
experimental study with coupled chemical oscillators
[19] show similar routes to CPS. We believe that these
three types of transition to CPS can be also observed in
many other coupled oscillators depending on the degree
of phase coherence, and are of practical importance in
experimental study of CPS, especially for the purpose of
experimental controlling and the estimation of necessary
coupling strength. The study of noise influence on the
hierarchy of transitions to CPS as well as the transitions
to m:n synchronization and an extension to large ensem-
bles of coupled oscillators is a subject of future study.
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