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The existence of rotatory, oscillatory, and oscillatory-rotatory synchronization of two coupled chaotic phase
systems is demonstrated in the paper. We find four types of transition to phase synchronization depending on
coherence properties of motions, characterized by phase variable diffusion. When diffusion is small the onset
of phase synchronization is accompanied by a change in the Lyapunov spectrum; one of the zero Lyapunov
exponents becomes negative shortly before this onset. If the diffusion of the phase variable is strong then phase
synchronization and generalized synchronization, occur simultaneously, i.e., one of the positive Lyapunov
exponents becomes negative, or generalized synchronization even sets in before phase synchronization. For
intermediate diffusion the phase synchronization appears via interior crisis of the hyperchaotic set. Soft and
hard transitions to phase synchronization are discussed.
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I. INTRODUCTION

Synchronization of chaotic oscillations is a fundamental
phenomenon observed in nature and science. Three main
types of synchronization have been studied, namely, com-
plete ~or full! synchronization @1#, generalized synchroniza-
tion @2#, and phase synchronization @3# ~for a review about
chaotic synchronization, see Refs. @3–6#!. Complete syn-
chronization of identical systems occurs when the states of
coupled systems coincide; the coupling should be strong
enough to suppress the chaotic instability and to make one of
the positive Lyapunov exponents negative. A similar situa-
tion, in the sense of a change of the Lyapunov exponents
spectrum, usually take place by generalized synchronization
of coupled nonidentical oscillators. Contrary to complete and
generalized synchronization, the phase locking can appear
for relatively small coupling when all positive Lyapunov ex-
ponents remain positive.

Chaotic phase synchronization of coupled oscillators, first
demonstrated for paradigmatic dynamical models, the
Rössler and Lorenz systems @7–12#, has been observed in
many laboratory and natural systems @13#. This type of cha-
otic synchronization is very similar to the synchronization of
periodic oscillators and is manifested in the occurrence of
locking between suitably defined phases, while the ampli-
tudes remain nearly uncorrelated. Recently, phase synchroni-
zation of chaotic rotators has been studied for coupled non-
autonomous continuous-time rotators and for discrete-time
rotators, i.e., the circle maps @14–16#. It has been found that
phase synchronization occurs via a crisis transition @17# to a
band-structured chaotic attractor. At that the Lyapunov expo-
nents corresponding to both phase variables remain positive.
It is important to note that, in general, there is no zero
Lyapunov exponent in these systems in the chaotic regime.
In this paper we study synchronization phenomena in
coupled autonomous continuous-time phase systems @18#.

The paper is organized as follows. In Sec. II we describe
the model under study, present two of its main properties,
and introduce two types of chaotic phase synchronization. In

Secs. III–V we present our numerical results of synchroni-
zation of rotatory, oscillatory, and oscillatory-rotatory phase
variables, respectively. Section VI is devoted to describe
hard and soft transitions to phase synchronization. The re-
sults are summarized in Sec. VII.

II. MODEL

The uncoupled model system is described by the follow-
ing equation:

m
d3f

dt3
1

d2f

dt 2
1

df

dt
1sin f5g , ~1!

where f is the phase variable defined in the interval
@2p ,p# , and m and g are non-negative parameters. Model
~1! is not only a paradigmatic model that we use to show
some nontrivial synchronization effects, but it is also a model
of a Josephson junction with constant biased current and
subject to a load with inductance, resistance, and capacitance
@19#. Model ~1! is also a model of a phase-locked loop ~PLL!
system with the simplest second-order filter @21#. These stan-
dard PLL circuits, well known in radio engineering, can op-
erate in the regime of generation of chaotically modulated
signals with the carrier stabilized at a reference frequency.

The following two properties of Eq. ~1! are important to
study peculiar synchronization processes in coupled systems:
~i! one of the variables is the phase variable and ~ii! chaos
possesses zero Lyapunov exponent, i.e. in the chaotic param-
eter regime, the dynamics has a zero Lyapunov exponent.
Due to the first property we will distinguish two types of
chaotic phase synchronization: ~i! ‘‘real’’ chaotic phase syn-
chronization ~RCPS! and ~ii! generalized chaotic phase syn-
chronization ~GCPS!. In the case of RCPS the well-known
conditions of phase and frequency locking of two coupled
systems should be fulfilled @22# and hyperchaos, i.e., the ex-
istence of two positive Lyapunov exponents, should take
place. In the case of GCPS only one Lyapunov exponent
remains positive, although the phase and frequency locking
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conditions are fulfilled. There is another type of synchroni-
zation, generalized chaotic synchronization ~GCS!, at which
only one Lyapunov exponent is positive but phase and/or
frequency locking does not take place. It is very important to
note that the negativity of the Lyapunov exponents is only a
necessary condition for the stability of the synchronous state.
But very often @23# the transition to GCS is rather close to
the transition of one of the Lyapunov exponents from posi-
tive to negative values. Therefore, we will conclude the onset
of GCS when one of the positive Lyapunov exponents be-
comes negative.

Due to the second property, that chaos possesses a zero
Lyapunov exponent, there are many properties in common
between phase synchronization of autonomous chaotic oscil-
lators and phase synchronization of autonomous chaotic
phase systems.

In order to study synchronization phenomena in coupled
nonidentical chaotic phase systems ~1!, we consider the fol-
lowing model equations:

ḟ1,25y1,2 ,

ẏ1,25z1,2 ,

m1,2ż1,25g1,22sin f1,22y1,22z1,21d1~y2,12y1,2!

1d2~z2,12z1,2!, ~2!

where d1,2 are the coupling coefficients.
Depending on the parameter values the uncoupled system

can demonstrate three types of chaotic behavior @24#: ~i! ro-
tations, ~ii! oscillations, and ~iii! oscillations-rotations. We
will investigate synchronization phenomena for all those
types of chaotic dynamics. The effect of synchronization of
chaos realized in a system of two coupled PLL generating
chaotic signals can be used in secure communication appli-

cations. Such important properties of PLL as high accuracy
of synchronization and the possibility of very simple control
make the PLL very promising for data communication using
not only regular but chaotic signals as well @25#. Unidirec-
tionally coupled chaotic PLLs analogous to Eq. ~1! have
been considered in Ref. @26,27#. In @26# chaotic phase syn-
chronization and in Ref. @27# almost complete chaotic syn-
chronization are presented.

As well as for periodic synchronization, the appearance of
chaotic phase synchronization is affected by the frequency
mismatch of the coupled subsystems and by the coherence
property of the motions. We will characterize this property,
i.e., the diffusion of the phase variables, by their variances
Df1,2

that are defined for large times as

^~ḟ1,22^ḟ1,2& !2&5Df1,2
, ~3!

where ^•& is time averaging. We will show below that these
variances Df1,2

of both coupled subsystems ~as well as their
frequency mismatch! play a crucial role in the transitions to
phase synchronization.

III. PHASE SYNCHRONIZATION OF ROTATORY
PHASE VARIABLES

In this case, phase variables f1,2 unboundedly increase
and ḟ1,2 are always ~or almost always! positive. A projection
of the chaotic phase rotating trajectory on the (f ,y) plane
@Fig. 1~a!# looks like a ‘‘smeared’’ periodic trajectory with
monotonically ~or almost always! increasing phase. There-
fore, the phase synchronization of chaotic rotations is quite
similar to the periodic synchronization, i.e. in both cases
only the phase growth rate is important. The averaged
growth rate of phases or the mean frequency of rotations can
be defined as

FIG. 1. Synchronization of ro-
tatory phase variables. ~a! Projec-
tions of the typical rotatory trajec-
tory of the system ~1! on the
(f ,y) plane. Parameters are g
50.645, m53.0. In ~b!–~d! pa-
rameters are g150.645, g2

50.667, m53.0, and d250. ~b!

The four largest Lyapunov expo-
nents, one of which is always
zero. ~c! Difference of phase vari-
ables f22f1 for nonsynchronous
(d150.0065;0.007;0.0072) and
synchronous (d150.008) re-
gimes. ~d! The mean frequency ra-
tio V1 /V2 vs coupling.
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V5^ḟ&5^y&. ~4!

In order to test for the existence of phase synchronization
@31#, we use two criteria. A chaotic synchronization of the
rotations occurs if the mean frequencies characterizing the
long time scale behavior of the coupled systems become
equal:

V15V2 . ~5!

On the short time scale, i.e., inside the @2p;p# interval, due
to the high diffusion of the phases, the transient phase dif-
ferences can be rather large. The second criterion we use is
the phase locking criterion

uf2~ t !2f1~ t !u<const ~6!

that ignores the short time scale behavior as well. Phase syn-
chronization according to criteria ~5! and ~6! can be observed
for systems, where the evolution of the phase variables be-
haves as an alternation of large intervals ~where the phase
variable increases! with relatively small intervals ~where the
phase variable decreases!. We will demonstrate the existence
of both the types of phase synchronization: RCPS and GCPS
for such a type of behavior.

In our calculations, we set g150.645, g250.667, m1,2
53.0, and d250. For these parameters the diffusion of
phases is relatively large in both systems (Df1

'0.219,Df2

'0.216), which affects the occurrence of phase synchroni-
zation. To illustrate the corresponding transition to phase
synchronization, we plot the four largest Lyapunov expo-
nents @Fig. 1~b!# and the mean frequency ratio @Fig. 1~d!#
versus coupling, as well as the difference between the phase
variables f12f2 for different couplings strength @Fig. 1~c!#.
One can see that the real phase synchronization occurs at
d1

1'0.0076 @Fig. 1~d!#. For d1.d1
1, the frequency and phase

locking conditions ~5! and ~6! are satisfied, but hyperchaotic
attractor still exists.

It is known @9# that for phase-coherent attractors phase
synchronization sets in approximately at that value of cou-
pling when one of the zero Lyapunov exponents becomes
negative. In our simulations we find @Fig. 1~b!# that one of
the zero Lyapunov exponents becomes negative already at
d1'0.003. But the transition to RCPS in system ~2! occurs
for essentially larger coupling. The occurrence of phase syn-
chronization takes place via a crisis transition of the structure
of the hyperchaotic attractor, i.e. via an interior crisis of the
chaotic set.

At larger coupling (d1
2'0.0118), where one of the posi-

tive Lyapunov exponents becomes negative, GCPS occurs.
Due to the relatively high noncoherence properties, the inter-
val of the values of coupling between the transitions to
RCPS and to GCPS L5@d1

1 ;d1
2# is small. As our numerical

simulations show, the increase in the parameters g1,2 leads to
a complication of the topological structure of the chaotic
attractors. The intervals, where the phase variables decrease,
become larger and the behavior transfers from a rotational
type to an oscillation-rotational one. This leads to an increase
in the noncoherence properties of motion ~diffusion of the

phase variable increases! and as a result of that the width of
the L interval between RCPS and GCPS tends to zero. The
reason for that is the following. The chaotic phase synchro-
nization is similar to the synchronization of periodic oscilla-
tions in the presence of noise @9#. When noise increases, a
larger coupling is needed to achieve phase locking. By anal-
ogy, in order to suppress large phase fluctuations by chaotic
phase synchronization, a stronger coupling has to be applied.

IV. PHASE SYNCHRONIZATION OF OSCILLATORY
PHASE VARIABLES

In this case in both subsystems in Eq. ~2! the phase vari-
able oscillates around some constant value ~i.e., f1,2 are
bounded! @Fig. 2~a!#. Synchronization of such oscillatory
phase variables is quite similar to the case of usual phase
synchronization of chaotic oscillators @9#. Because of the
simple topology of the chaotic attractor one can introduce a
new ‘‘artificial’’ phase variable

c5arctan
y

f2arcsin g
, ~7!

a new amplitude

A5@~f2arcsin g !2
1y2#1/2, ~8!

and the mean frequency:

v5^ċ&5 lim
T→`

c~T !2c~0 !

T
. ~9!

Here conditions ~5! and ~6! have been applied to the new
phase variables c1,2 and the mean frequencies v1,2 can be
used as criteria of synchronization. Therefore, although the
oscillatory and rotatory cases cannot be generally reduced
one to another, two similar criteria of the existence of phase
synchronization can be used and as we will show, many
similar effects take place. For the chosen parameters g1
50.815, g250.83, and m1,253.3, the coherence of motions
is rather high (Dc1

'0.075,Dc2
'0.079). We consider y and

z couplings @in Eq. ~2! d15d25d]. As in the case of phase
synchronization of rotatory phase variables, we compute the
Lyapunov spectrum @Fig. 2~b!#, the frequency ratio @Fig.
2~d!#, and the evolution of the phase variable difference @Fig.
2~c!#. For oscillatory phase variables both phase synchroni-
zations, RCPS and GCPS, are found. With an increase in the
coupling, the frequency ratio r5v2 /v1 decreases to 1
smoothly ~without any jump!, i.e., a soft transition to RCPS
takes place. This is manifested in the evolution of the phase
variable difference, namely for a coupling close to the criti-
cal value d1

50.0082, phase locking at large time intervals is
observed @Fig. 2~c!#. Due to the high coherence of motions,
i.e., small phase diffusion, phase locking and frequency en-
trainment occur approximately ~shortly after! at the same
value of coupling for which one of the zero Lyapunov expo-
nents becomes negative. It should be mentioned that by the
transition to synchronization of the ‘‘artificial’’ phases c1,2
the new amplitudes A1,2 as well as the real phases f1,2 re-
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main highly uncorrelated ~Fig. 3!. But some frequency en-
trainment sets in. The averaged number of oscillations per
unit time, computed easily as the number of maxima, coin-
cide for both phases for d.d1.

At essentially larger coupling (d2
50.043) generalized

phase synchronization and as a result a strong correlation of
all variables arise. Interval L5@d1

1 ;d1
2# between the transi-

tions to RCPS and to GCPS is relatively large. As in the case
of rotatory synchronization, we observe that when the non-
coherence properties increase with an increase in the g1,2
parameters, the L interval becomes smaller and tends to zero.

V. PHASE SYNCHRONIZATION OF
OSCILLATORY-ROTATORY PHASE VARIABLES

A quite different situation occurs in the case of
oscillatory-rotatory behavior of phase variables @Fig. 4~a!#.
The existence of phase synchronization, is in general, a non-
trivial effect because the phase variables f1,2 increase non-
monotonically. Their evolution is an alternation between
time intervals ~where the phase variable increases! and time
intervals ~where the phase variable decreases!. Due to the
similar lengths of both intervals, it is impossible to separate
the evolution of the phase variables into two different time

FIG. 2. Synchronization of os-
cillatory phase variables. ~a! Pro-
jections of a typical oscillatory
trajectory of system ~1! on the
(f ,y) plane for the parameters g
50.83, m53.3. In ~b!–~d! the pa-
rameters are g150.815, g2

50.83, and m1,253.3. ~b! The
four largest Lyapunov exponents.
~c! Difference of phase variables
c12c2 of the y- and z-coupled
subsystems in Eq. ~2! (d15d2

5d) for nonsynchronous (d
50.006;0.007), nearly synchro-
nous (d50.008), and synchro-
nous (d50.009) regimes. ~d! The
mean frequency ratio v1 /v2 vs
coupling.

FIG. 3. Projections of the tra-
jectories of system ~2! on the
(f1 ,f2) plane outside the syn-
chronization region ~a! ~d
50.008!, and within the synchro-
nization region ~b! ~d50.009!.
Parameters are g150.815,
g250.83, and m1,253.3.
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scales. In order to achieve synchronization, it is obviously
necessary to have synchronization of both subtypes of be-
havior: rotations and oscillations. As our numerical simula-
tions show, the occurrence of RCPS is possible only for a
very small parameter mismatch between both the subsystems
in Eq. ~2!. If the parameter mismatch is large enough, GCPS
and GCS set in simultaneously ~Fig. 4!, or GCS occurs be-
fore GCPS ~Fig. 5!.

Let us first consider the case when GCPS and GCS are
achieved at the same critical coupling. We chose parameters
(g150.34, g250.37, and m1,255.0) in such a way that the
noncoherence of motions in both the subsystems in Eq. ~2! is
very high. So we have Df1

'0.94 and Df2
'1.084. In Fig. 4

we show, as before, the four largest Lyapunov exponents

@Fig. 4~b!# and the mean frequencies ratio @Fig. 4~d!# versus
coupling, as well as the difference between phase variables
f12f2 for different coupling strengths @Fig. 4~c!#. These
figures indicate that the transitions to GCPS and GCS occur
at d'0.0082.

Contrary to the presented examples, where with increase
of coupling phase synchronization sets in before or simulta-
neously with generalized synchronization, we will show the
possibility that phase synchronization emerges after the gen-
eralized one @14#. We take a relatively large parameter mis-
match (g150.34, g250.39, and m1,255.0). In Fig. 5 we
plot the mean frequency difference V12V2 and the three
largest Lyapunov exponents. One of the positive Lyapunov
exponents, l2, becomes negative at d'0.0046, i.e., general-
ized synchronization sets in. But conditions ~5! and ~6! for
frequency and phase locking are fulfilled only beyond d
'0.012. Therefore, generalized synchronization is weaker
than phase synchronization in this case. The Lyapunov expo-
nent l2 demonstrates an interesting feature. It increases rap-
idly and almost jumps to zero ~but does not reach it!, if the
coupling is close to the critical value d corresponding to the
transition to GCPS.

We have to note that if the noncoherence properties are
very large phase synchronization cannot be achieved for any
coupling strength.

VI. HARD AND SOFT TRANSITIONS
TO PHASE SYNCHRONIZATION

We have found that phase synchronization of two coupled
systems ~2! can appear or vanish in two ways: soft and hard
transition. The soft transition described in all examples in the
preceding sections is characterized through a smooth locking
of the observed frequencies. Also the topological changes in
the phase space appear smoothly. But for the hard transition

FIG. 4. Synchronization of
oscillatory-rotatory phase vari-
ables. GCPS and GCS occur prac-
tically simultaneously at d
'0.0082. ~a! Projections of the
trajectory of system ~1! on the
(f ,y) plane. Parameters are g
50.34, m55.0. In ~b!–~d! param-
eters are g150.34, g250.37, and
m1,255.0: y- and z-coupled sub-
systems @in Eq. ~2! d15d25d].
~b! The four largest Lyapunov ex-
ponents. ~c! Difference of phase
variables f12f2 for nonsynchro-
nous (d50.007;0.0078;0.008)
and synchronous (d50.0085) re-
gimes. ~d! The mean frequency ra-
tio V1 /V2 vs coupling.

FIG. 5. Synchronization of oscillatory-rotatory phase variables.
GCS occurs before GCPS. Parameters are g150.34, g250.39, and
m1,255.0: y- and z-coupled subsystems @in Eq. ~2! d15d25d]. The
three largest Lyapunov exponents and the mean frequency differ-
ence V12V2 ~circles! vs coupling are shown.
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to phase and frequency locking quite another situation takes
place. Such a transition is illustrated by Fig. 6, where we plot
as before the four largest Lyapunov exponents @Fig. 6~a!# and
the mean frequencies ratio @Fig. 6~b!# versus coupling, as
well as the difference between phase variables f12f2 for
different coupling strengths @Fig. 6~c!#. In Fig. 7 the projec-
tions of the trajectories of system ~2! on planes (f1 ,f2)
@Figs. 7~a! and 7~b!# and (y1 ,y2) @Figs. 7~c! and 7~d!# are
presented.

The relatively large jump in the mean frequency ratio r
5V1 /V2 from nonsynchronous (rÞ1) to synchronous (r
51) hyperchaotic behavior can be considered as a manifes-

tation of a hard transition to phase synchronization. Indeed,
for very small changes in the coupling, strong changes in the
phase difference evolution @Fig. 6~c!# and in the phase por-
trait ~Fig. 7! are observed. For d150.0084, i.e., when d1 is
very close to the critical value d1

1, only very short intervals
of synchronization episodes are observed in the phase differ-
ence ~compare with Figs. 1~c!, 2~c!, and 4~c! that demon-
strate phase differences for the oscillatory case where the
transition to phase synchronization is soft!. The projections
of the hyperchaotic attractor on planes (f1 ,f2) and (y1 ,y2)
before and after the transition to phase synchronization are
presented in Fig. 7. For the synchronous regime the chaotic

FIG. 6. Hard transition to RCPS. Parameters
are g150.645, g250.636, m153.0, m253.05,
and d250. ~a! The four largest Lyapunov expo-
nents. ~b! The mean frequency ratio V1 /V2 vs
coupling. ~c! Difference of phase variables f2

2f1 for nonsynchronous (d150.0;0.008;0.0084!

and synchronous (d150.0088) regimes. At
chosen parameter values Df1

'0.219 and
Df2

'0.218.

FIG. 7. Projections of the tra-
jectories of system ~2! on the
planes (f1 ,f2) @~a! and ~b!# and
(y1 ,y2) @~c! and ~d!# for g1

50.645, g250.636, m153.0, m2

53.05, and d250 outside the
synchronization region @~a! and
~c!# (d150.0084) and within the
synchronization region @~b! and
~d!# (d150.0088).
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trajectory lies within relatively narrow bands in the phase
space @Figs. 7~b! and 7~d!#, while when synchronization is
lost these bands smear and merge together @Figs. 7~a! and
7~c!#. Such a hard transition to a band-structured attractor
can be explained as follows. In Ref. @28# it was shown that
chaotic phase synchronization takes place in the parameter
region where all unstable periodic orbits, embedded in the
chaotic attractors, are synchronized. For the presented case,
the hard transition to phase synchronization is caused by the
fact that boundaries of the Arnold tongues corresponding to
synchronization of unstable orbits are very close to each
other. Another interesting result similar to that presented in
Fig. 5 can be seen in Fig. 6~a!. When the coupling increases,
one of the zero Lyapunov exponents initially remains equal
to zero, then it becomes negative and jumps to zero, without
reaching it. This happens when the coupling is close to the
critical value d1

1 corresponding to the transition to RCPS, and
then beyond d1

1 this Lyapunov exponent decreases again.

VII. CONCLUSIONS

We have found that rotatory, oscillatory and oscillatory-
rotatory synchronization can occur in two coupled autono-
mous chaotic phase systems. Three types of synchronization
have been studied: ~i! Real chaotic phase synchronization
~RCPS!, which is a synchronization occurring when two
Lyapunov exponents are positive and when frequency and
phase locking conditions are fulfilled; ~ii! generalized chaotic
phase synchronization ~GCPS!, a synchronization occurring
when only one Lyapunov exponent is positive and when fre-
quency and phase locking conditions are fulfilled; and ~iii!
generalized synchronization ~GCS!, a synchronization occur-
ring when only one Lyapunov exponent is positive and when
frequency and phase locking conditions are not fulfilled.

Depending on the coherence properties of the motions,
which can be measured by the diffusion of the phase vari-
able, we observe four transitions to phase synchronization.
For small diffusion, the onset of phase synchronization is
accompanied by the change of the Lyapunov spectrum ~one
of the zero Lyapunov exponents becomes negative shortly
before the onset!. If the diffusion of the phase variable is
strong, then phase and generalized synchronization ~one of
the positive Lyapunov exponents becomes negative shortly
before! occur simultaneously, or generalized synchronization
sets in before phase synchronization. For intermediate diffu-
sion, phase synchronization appears via an interior crises of
the hyperchaotic set.

Obtained results show that topological ~e.g., coherence!

properties of motion play a crucial role in the appearance of
chaotic phase and generalized synchronization. Complication
in the topological structure of motions, e.g., an increase in
the noncoherence caused by the change of system parameters
is observed for many dynamical systems. For example, the
change of control parameters in the Rössler oscillator leads
to the transition from a phase-coherent to ‘‘funnel’’ chaotic
attractor. Appearance of phase synchronization of phase-
coherent attractors in coupled Rössler oscillators, first dem-
onstrated in Ref. @9#, is quite similar to the appearance of
synchronization of oscillatory phase variables described
above ~Sec. IV!. Recently @29#, the onset of chaotic phase
synchronization was observed for coupled funnel attractors
in coupled Rössler oscillators. It occurs via an interior crisis
of hyperchaotic set as in the case of synchronization of rota-
tory phase variables presented in our paper in Sec. III. There-
fore, the results presented in our paper seem to be typical for
coupled chaotic oscillators.

Our results are of special importance from the points of
view of phase locking effects in coupled Josephson junctions
and in the theory of automatic synchronization. For example,
the onset of chaotic synchronization of phase variables of
two standard PLL circuits with simplest second-order filter
can be used in secure communications based on the effect of
chaotic synchronization. Synchronization phenomena ob-
served in Eq. ~2! can be very easily reproduced in the experi-
mental testing. Equations ~2! describe dynamics of two cha-
otic PLL coupled through an additional frequency
discriminator. The possible variants of concrete electronics
schemes corresponding to Eq. ~2! can be found in Ref. @30#.
An obvious advantage of proposed synchronization schemes
is in the fact, that the chaotic phase synchronization can be
obtained for very small coupling. For example, in Ref. @27#
the coupling strengths needed to achieve almost complete
chaotic synchronization are '50–100 times larger than in
the presented case. Extension of obtained effects to the net-
works of coupled PLL’s and Josephson junction should be a
subject of future experimental and theoretical works.
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